لطفا به نکات زیر در هنگام خرید دانلود فایل پاورپوینت تبدیل فوریه (Fourier Transform) توجه فرمایید.

1-در این مطلب، متن اسلاید های اولیه دانلود فایل پاورپوینت تبدیل فوریه (Fourier Transform) قرار داده شده است 2-به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید 3-پس از پرداخت هزینه ، حداکثر طی 4 ساعت پاورپوینت خرید شده ، به ادرس ایمیل شما ارسال خواهد شد 4-در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد 5-در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون زیر قرار نخواهند گرفت

— پاورپوینت شامل تصاویر میباشد —-

اسلاید ۱ :

  • پس ازعبور نور از يك منشور ‍(Prism)  يا diffraction grating، نور به اجزا  مختلف با فركانس هاي خاص خود  (مونوكروماتيك) تجزيه مي شود.
  • اين امر مشابه تبديل فوريه (FT) است.
  • مي توان يــك سيگنال يك بعدي را بصورت مجموعه اي از امواج سينوسي (با فركانس و دامنه متفاوت) نشان داد.
  • هرچه فركانس هاي بيشتري را محاسبه نماييم تخمين فوريه يك سيگنال دقيق تر مي شود و  اطلاعات  بيشتري  درباره شكل اوليه آن بدست مي آيد.

اسلاید ۲ :

  • FT مبتني بر اين واقعيت است كه سيگنال دوره اي (Periodic) شامل  بي نهايت سيگنال هاي سينوسي وزن دار با فــركانس هاي متفاوت است. اين فركانس ها  عبارتند از  فركانس پايه (frequency Fundamental ) و مضارب درست اين فركانس پايه.
  • در تبديل فوريه، توابع پايه‌اي هم جهت(orthonormal basis function)، امواج سينوسي با فركانس‌هاي متفاوت هسنند كه در فضاي بي‌نهايت تعريف شده‌اند

اسلاید ۳ :

  • هر يك از ضرايب حاصل در تبديل فوريه توسط ضرب نقطه‌اي(inner product) تابع ورودي و يكي از توابع پايه‌اي(basis function) بدست مي‌آيد.
  • اين ضرايب، در واقع، درجه شباهت بين تابع ورودي و تابع پايه‌اي مورد نظر را نشان مي‌دهد.
  • اگر دو تابع پايه‌اي بر هم عمود (orthogonal) باشند، حاصل‌ضرب نقطه‌اي آنها صفر و لذا نشان مي‌دهد كه آن‌دو با هم شبيه نيستند.
  • بنابراين اگر سيگنال يا تصوير ورودي از اجزايي تشكيل شده باشد كه يك يا چند تابع پايه‌اي داشته باشد، سپس آن يك يا چند ضريب بزرگ و ديگر ضرايب كوچك هستند.

اسلاید ۴ :

  • در تبديل معكوس، سيگنال يا تصوير اوليه توسط مجموع توابع پايه‌اي (در فركانس‌هاي مختلف) كه تحت تاثير وزن ضرايب تبديل قرار گرفته‌اند، بازسازي مي‌شود.
  • بنابراين اگر يك سيگنال يا تصوير از اجزائي شبيه به تعداد معدودي از توابع پايه‌اي تشكيل شده باشد، بسياري از عبارات موجود در اين جمع (ضرايب تبديل) حذف شده و فقط تعدادي از اين ضرايب تبديل، تقويت اجزايي از تصوير را كه شبيه به توابع مربوطه پايه‌اي است انجام داده و تصوير را مي‌سازند.

اسلاید ۵ :

  • وقتي تبديل فوريه يك سيگنال يا تصوير بدست مي آيد، اعمال متعدد رياضي برروي آنها قابل انجام است. در فضاي فركانسي انجام اين عمليات رياضي از انجام آنها در فضاي مكاني به مراتب ساده تر است.
  • بعنوان مثال عمل Convolution به يك ضرب  ساده تبديل مــي شود و روش هاي پردازشي  ديگر نيز مانند  Correlation،  differentiation،  integration و Interpolation  به سهولت انجام مي شوند.

اسلاید ۶ :

  • تبديل فوريه يك تابع يك بعدي ( x ) f بصورت زير تعريف مي شود.
  • x بـعنــــــوان يـك مـتغيــر در فضاي واقـعـي ( real Space ) و U در فضاي فركـانس (Frequency Space) در نظر گرفته مــــي شود و ( x ) f نـشان دهنده يك پــروسـه فيـزيكـي است.
  • ( x ) f مــعمـولاً band Limited است يعني پهناي باند آن ۲B  است.  

f(x)¹ ۰  for      < B

otherwise      f(x) = 0

اسلاید ۷ :

  • تـــبــديـــل فـــوريـــه در مــســا ئــل طبــيــعــي و عــادي بـه صـورت يك تخميـن  تحليلي  ريــاضـي (Analytic expression) بكار مي رود.
  • بــه ايــن تخمين، تبديل فوريـــه گسسته ( Discrete Fourier Transform ) مي گويند.
  • DFT، نسخه نمونه برداري شده FT (در گستره بي نهايت) است كه از طريق تكرار replication))  بخشي از آن در محدوده نمونه برداري شده بدست مي آيد. لذا اطلاعات در فضاي فركانسي بصورت مجموعه ء گسسته نقاط در نظر گرفته مي شود.

Xj = jDx,   j=0,1,2,….,N-1

Un = nDU,   n=0,1,2,….,M-1