لطفا به نکات زیر در هنگام خرید دانلود فایل پاورپوینت فراکتال ها توجه فرمایید.

1-در این مطلب، متن اسلاید های اولیه دانلود فایل پاورپوینت فراکتال ها قرار داده شده است 2-به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت  تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید 3-پس از پرداخت هزینه ، حداکثر طی 4 ساعت پاورپوینت خرید شده ، به ادرس ایمیل شما ارسال خواهد شد 4-در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد 5-در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون زیر قرار نخواهند گرفت

— پاورپوینت شامل تصاویر میباشد —-

اسلاید ۱ :

تعریف آشوب

فصل مشترک تعاریفی که برای مفهوم آشوب ارائه شده است ، تاکید بر این نکته است که آشوب دانش بررسی رفتار سیستم هایی است که اگرچه ورودی آنها قابل تعیین واندازه گیری است ، اما خروجی این سیستم ها ظاهری کتره ای و تصادفی دارد.
شاید به همین دلیل بود که استوارت ریاضیدان برجسته این موضوع را مفهومی احتمالاتی میدانست اما چیزی نگذشت که وی تعریف خود را اصلاح کرد و به تعریفی رسید که تقریبا مورد تایید عمومی قرار دارد.

بر اساس این تعریف ، آشوب به توانایی یک الگو و مدل ساده گفته می شود که اگرچه خود این الگو هیچ نشانی از پدیده های تصادفی در خود ندارد، اما می تواند منجر به ظهور رفتارهای بسیار بی قاعده در محیط شود.

اسلاید ۲ :

فراکتالها
اگرچه آشوب نظریه ای است که بر موضوعات گوناگون اجتماعی و سیاسی و اقتصادی نظر دارد، اما نیازمند زبانی برای تصویر سازی مفاهیم خود بود و این عرصه ای بود که هندسه آشوب یا فراکتالها خلق کردند

ما در هندسه آشوب با تصاویر متفاوتی سرو کار داریم ، تصاویری که بزرگترین خصوصیات آنها این است که وقتی رسم آن را آغاز می کنیم ، نمی دانیم در نهایت با چه پدیده ای روبه رو خواهیم شد و از سوی دیگر بازخورد در آن نقش اساسی دارد.

اسلاید ۳ :

فراکتال چیست؟

فراکتال شکل هندسی چند جزیی است که می‌توان آن را به تکه هایی تقسیم کرد که انگار هر تکه یک کپی از ” کل ” شکل است. حالا به تصویرها نگاه کنید!

self similarity تشابه به خود

در کتاب ریاضی خوانده ایم و می‌دانیم که تشابه ، یکسانی اشکال در عین متفاوت بودن اندازه هاست. به زبان ساده تر اگر بتوانیم با بزرگ یا کوچک کردن دو شکل آنها را درست مثل هم کنیم ، آن دو متشابه اند اما شکل های خود متشابه کدام‌ها هستند؟


 

به این شکل دقت کنید!  

                                                          
شکل کلی آن یک ذوزنقه است و خودش از ذوزنقه های کوچکتر کنار هم پدید آمده است. این یک مثال از تشابه به خود است
.

اسلاید ۴ :

این مثلث بزرگ که نامش مثلث سیرپینسکی است از مثلثهای مشابه کوچکتر درست شده  است که

همین طور کوچکتر و کوچکتر هم می‌شوند.
ببینید چند سایز مثلث وجود دارد و آیا همه باهم و با مثلث بزرگ تشابه دارند؟

اسلاید ۵ :

همانطور که می‌دانید ، یک نقطه بعد ندارد
یک خط ، شکلی یک بعدی است.
یک صفحه ، دو بعد دارد
ودر آخر شکلهای حجیم ، سه بعد دارند
اگر یک پاره خط را نصف کنیم چه پیش می‌آید ؟

                                      
حالا دو خط داریم که درست مثل هم هستند.

اگر هر دو بعد یک مربع را نصف کنیم چطور ؟ حالا چهار مربع هم اندازه داریم.

با نصف کردن هر سه بعد یک مکعب به هشت مکعب کوچکتر می‌رسیم
.                                             

اسلاید ۶ :

Iterative formation تشکیل از راه تکرار

مقصود از تشکیل از راه تکرار چیست؟ یعنی برای درست کردن یک فراکتال می‌توانیم یک شکل معمولی هندسی ( مثلاً یک خط) را برداریم و با آن یک شکل پیچیده تر بسازیم. بعد با آن شکل به دست آمده شکل پیچیده تری بسازیم ، و همین طور به این کار ادامه دهیم اشکال فراکتالی به این طریق به وجود می‌آیند و برنامه های کامپیوتری متعددی بر ایجاد آنها نوشته شده است. هر کدام از آنها هم اسم و رسمی برای خود دارند مثلاً مثلث سیرپنیکی که قبلاً دیدید یا :                                  

 
دانه برف کخ                                                                            
 
 

اسلاید ۷ :

ایده خود متشابه در اصل توسط لایبنیتس بسط داده شد. او حتی بسیاری از جزئیات را حل کرد. در سال ۱۸۷۲کارل وایرشتراس مثالی از تابعی را پیدا کرد با ویژگیهای غیر بصری که در همه جا پیوسته بود ولی در هر جا مشتق پذیر نبود.گراف ‌این تابع اکنون برخال نامیده می شود.

در سال ۱۹۷۵ مندلبرو جهت مشخص کردن شئی که بعد ((هاوسدورف بیسکویچ)) آن بزرگ‌تر از بعد توپولوژیک است کلمه برخال را‌ایجاد کرد. او‌این تعریف ریاضی را از طریق شبیه سازی خاص کامپیوتری تشریح کرد                

اسلاید ۸ :

شکل زیر سه مرحله از ایجاد منحنی برفدانه کخ را نشان میدهد. روند کار بایک قطعه آغاز میشود که دو نقطه را به هم وصل می کند. در اولین تکرا روال ، قطعه اولیه با یک منحنی که مولد منحنی برفدانه کخ نامیده می شود جایگزین می گردد در مرحله دوم هر قطعه از مولد با یک نسخه کوچکتر خودش جایگزین می گردد. با بی نهایت تکرار این روند فراکتال کامل به دست می آید. 

اسلاید ۹ :

فراکتال ها تصویری از یک زندگی واقعی دارند . کامپیوترها می توانند یک شکل واقعی را بگیرند و با انجام تکرار زیاد به آن شکل تخیلی بدهند . یک معادله ی فراکتال می توان ساخت که شکل ابرها را بسازد . در فیلم ها ی متعددی از فراکتال ها برای چشم انداز پشت صحنه استفاده می کنند.

فراکتالها همه جا هستند. شکل لانه زنبور یا همان کندو. شکل یک برگ که رگ برگها و آوندها در آن معلوم است . بافت پوست انسان.و یک چیز چندش آور برای خیلی خانوما : طرح بافت گوشت سیرابی

اسلاید ۱۰ :

همان طور که می بینید ، در بسیاری از حالات ، ۲۰۰ تکرار لازم است تا تنها یک نقطه تعیین شود . در اغلب کامپیوترها ، معمولاً تعداد نقاط برای یک فراکتال ۳۰۳,۲۰۰ تاست . به همین دلیل است که برای محاسبه ی عملیات زیاد و دقت انجام آن ها به کامپیوتر نیاز داریم.