بخشی از مقاله

بررسی علم ژنتیک از تولد تاکنون

علم زیست شناسی، هرچند به صورت توصیفی از قدیم‌ترین علومی بوده که بشر به آن توجه داشته است؛ اما از حدود یک قرن پیش این علم وارد مرحله جدیدی شد که بعدا آن را ژنتیک نامیده‌اند و این امر انقلابی در علم زیست شناسی به وجود آورد. در قرن هجدهم، عده‌ای از پژوهشگران بر آن شدند که نحوه انتقال صفات ارثی را از نسلی به نسل دیگر بررسی کنند ولی به 2 دلیل مهم که یکی عدم انتخاب صفات مناسب و دیگری نداشتن اطلاعات کافی در زمینه ریاضیات بود، به نتیجه‌ای نرسیدند. اولین کسی که توانست قوانین حاکم بر

انتقال صفات ارثی را شناسایی کند، کشیشی اتریشی به نام گریگور مندل بود که در سال 1865 این قوانین را که حاصل آزمایشاتش روی گیاه نخود فرنگی بود، ارائه کرد. اما متاسفانه جامعه علمی آن دوران به دیدگاه‌ها و کشفیات او اهمیت چندانی نداد و نتایج کارهای مندل به دست فراموشی سپرده شد. در سال 1900 میلادی کشف مجدد قوانین ارائه شده از سوی مندل، توسط «درویس»، «شرماک» و «کورنز» باعث شد که نظریات او مورد توجه و قبول قرار گرفته و مندل به عنوان پدر علم ژنتیک شناخته شود. در سال 1953با کشف ساختمان جایگاه ژنها (DNA) از سوی جیمز واتسن و فرانسیس کریک، رشته‌ای جدید در علم زیست شناسی به وجود آمد که زیست شناسی ملکولی نام گرفت.

با حدود گذشت یک قرن از کشفیات مندل در خلال سالهای 1971 و 1973 در رشته زیست شناسی ملکولی و ژنتیک که اولی به بررسی ساختمان و مکانیسم عمل ژنها و دومی به بررسی بیماری‌های ژنتیک و پیدا کردن درمانی برای آنها می‌پرداخت، ادغام شدند و رشته‌ای به نام «مهندسی ژنتیک» را به وجود آوردند که طی اندک زمانی توانست رشته‌های مختلفی اعم از پزشکی، صنعت و کشاورزی را تحت الشعاع خود قرار دهد. پایه اصلی این رشته بر این اصل استوار است که با انتقال ژنی به درون ذخیره ژنی یک ارگانیسم، آن

ارگانیسم را وادار می کند - که در شرایط محیطی مناسب برای بیان آن ژن - به دستورات آن ژن که می‌تواند بروز یک صنعت یا ساختار شدن یک ماده بیوشیمیایی و... باشد، عمل کند. امروزه مهندسی ژنتیک خدمات شایان ذکری را به بشر ارائه کرده که در تصویر دیروز او نمی‌گنجیده و امری محال محسوب می‌شد! از برجسته‌ترین خدمات این علم در حال حاضر می‌توان موارد زیر را برشمرد: اصلاح نژادی حیوانات و نباتات که باعث بالا رفتن سطح کیفیت و کمیت فرآورده های غذایی استحصال شده از آنان گردیده است.

تهیه داروها و هورمون ها با درجه خلوص بالا و صرف هزینه های پایین درمان بیماری های ژنتیکی با ایجاد تغییرات در سلول تخم که از جدیدترین دستاوردهای مهندسی ژنتیک محسوب می شود و بسیار محدود است . پیش بینی محدود بیماری ها در فرزندان آینده یک زوج که از این طریق به زوجهای جوانی که می خواهند با یکدیگر ازدواج کنند. خدمات مشاوره ژنتیک می دهند و آنها را از وضعیت جسمانی فرزندان آینده شان مطلع می سازند. اما اگر بخواهیم دورنمای مهندسی ژنتیک را ترسیم کنیم ، تمامی موارد زیر قابل تصورند:

اعضای بدن انسان از قلب گرفته تا چشم و دست و پا به صورت مجزا از طریق مهندسی ژنتیک تولید می‌شوند و بانکهای اعضای بدن به نیازمندان پیوند عضو، عضو جدید عرضه می کنند و هر فرد می تواند عضوی که دقیقا مشابهت ژنتیکی با خودش را دارد، خریداری کند و از این طریق مشکل دفع پیوند که به دلیل شباهت نداشتن رموز ژنتیکی، فرد دهنده و گیرنده عضو ناشی می‌شود، مرتفع خواهد شد. در نتیجه آمار مرگ و میر انسان نیز پایین خواهد آمد. تمامی بیماری‌های ژنتیکی حتی در دوره جنینی نیز قابل درمان خواهد بود. از جهشهای متوالی

عوامل بیماری‌زا که عامل اصلی فناناپذیر بودنشان است ، جلوگیری به عمل می آید و درصد بالایی از بیماری های شناخته شده ریشه کن خواهد شد. کارتهای شناسایی افراد ژنتیکی خواهد شد که برای هر دو فردی روی کره زمین (بجز 2قلوهای همسان و کلونها) متفاوت خواهد بود و دقیقا هویت هر فرد را تعیین می کنند. مجرمان با گذاشتن کوچکترین اثر بیولوژیکی از خود مثل یک تار مو بسرعت شناسایی خواهند شد. می‌توان سرعت رشد موجودات مختلف را افزایش داد که خود این امر مزایای بسیاری را فراهم می‌آورد که از آن جمله می‌توان به پرورش سریع حیواناتی همچون گاو و گوسفند اشاره کرد که می‌توانند نیازهای غذایی یک جامعه را تا حد زیادی مرتفع کنند.

به نظر می‌رسد ژنتیک بخش بسیار عظیمی از آینده را به خود اختصاص خواهد داد و شاید یکه تاز زمان باشد. البته برای این علم جنجال برانگیز پایانی نمی‌توان متصور شد. تمامی مواردی که در بالا ذکر شد، از لحاظ نظری امکانپذیر است؛ ولی نیاز به تحقیق، مطالعات و آزمایشات فراوان دارد که بشر بتواند به آنها دست یابد و چون مسلط بودن بر این علم نیاز به پشتوانه قوی علومی همچون بیولوژی سلولی ملکولی، بیوشیمی، فیزیولوژی و آمار و احتمالات دارد، باید زحمات فراوانی برای دستیابی به ویژگی‌های این رشته از علم متحمل شد. در آخر ذکر این نکته نیز مهم است که باید قوانین بین المللی سخت و محکمی برای این رشته علمی تبیین کرد تا از انجام آزمایشاتی با نتایج اسفبار که این رشته امکان آن را فراهم می سازد، جلوگیری کرد؛ زیرا آنچه مسلم است این که ژنتیک در حالی که علم بسیار مفیدی برای انسان است ، می تواند در صورت استفاده های غیرمنطقی از آن نسل بشریت را گرفتار عواقب وحشتناکی کند و باعث انقراض او گردد.


ارتباط ژنتیک با سایر علوم
ژنتیک علمی است جدید و تقریبا از اوایل سالهای 1900 میلادی با ظهور علوم سیتولوژی و سیتوژنتیک جنبه علمی‌تر به خود گرفته است. علم سیتولوژی با ژنتیک قرابت نزدیکی دارد و به کمک این علم می‌توان مورفولوژی ، فیزیولوژی و وظایف ضمائم مختلف یک یاخته را مورد بررسی قرار داد. سیتوژنتیک نیز بخشی از علوم زیستی است که روی کروموزوم ، ضمائم یاخته و ارتباط آن با پدیده‌های ژنتیکی بحث می‌کند و در واقع علم دورگه‌ای از سیتولوژی و ژنتیک به شمار می‌رود.

تاریخچه علم ژنتیکسالها پیش از آن که دانشمندان سعی کنند تا با استفاده از قوانین فیزیکی و شیمیایی علت پدیده های زیست شناختی را نیز تبیین کنند، زیست شناسان با مشاهده گیاهان و جانوران قلمرو دانش خود را گسترش می‌دادند. در واقع، تحقیقات دو تن از پیشگامان این علم وجود نوعی دستور یا کد وراثتی بر همگان اثبات کرده بود.
چارلز داروین (Charles Darwin) در سال 1859 نظریه تکامل خود را مطرح کرده بود و گرگور مندل (Gregor Mendel) نیز در سال 1865 موفق شده بود قوانین اساسی وراثت را کشف کند؛ اما هیچ یک از آنها نتوانستند دریابند که چه عاملی باعث کنترل و هدایت سیستم های مورد مطالعه آنها می‌شود. تنها چیزی که آشکار بود این بود که عامل هدایت کننده جایی در

درون گیاهان و حیوانات پنهان بود. تا اینکه کشف ارزشمند دانشمند سویسی فردریش میشر (Friedrich Mischer) راه را برای ادامه تحقیقات گشود. او در سال 1869 در بیمارستانی در آلمان، ماده ای را از محل عفونت که غنی از گلبول های سفید بود، استخراج کرد. میشر این ماده را " نوکلئین " (nuclein) نامید. وی با کمال تعجب متوجه شد که منشاء این ماده فقط می‌تواند از کروموزوم‌ها باشد. بنابراین به حمایت از " نظریه وراثت شیمیایی " پرداخت و اعلام نمود که اطلاعات بیولوژیکی به صورت ترکیبات شیمیایی در سلولها ذخیره می‌شود و از نسلی به نسل بعد منتقل می‌گردد. با اینکه میشر در دورانی زندگی می‌کرد که اصول علم پزشکی - پس از چند هزار سال رکود - در حال دگرگونی اساسی بود، اما عده بسیار کمی از دانشمندان توانایی و پذیرش این اکتشاف مهم او را داشتند.


در قرن بعد، توماس مورگان (Thomas H.Morgan) زیست شناس آمریکایی، شروع به تحقیق و مطالعه در این مورد نمود. او دریافت که ژن‌ها بر روی محل های خاصی از کروموزم‌ها واقع شده اند و نتیجه گیری کرد که همین ژن‌ها عامل انتقال وراثتی مندل و نیز کلید اصلی تکامل داروینی هستند.


نقشه ای که مورگان از ژن های موجود بر روی کروموزم‌ها رسم کرد، سؤالات جدید بسیاری را مطرح نمود. ساختار پایه و خواص شیمیایی ژن‌ها هم چنان نامشخص بود. نحوه عمل آنها نیز هنوز به طور واضح مشخص نشده بود. هیچ کس نمی دانست که تکثیر یا نسخه برداری از ژن‌ها در سلول چگونه صورت می‌گیرد. منشاء بیماری های وراثتی و نقش جهش در این میان چه بود؟ و ... . اما اساسی ترین پرسش در این میان این بود که: ژن‌ها چگونه اطلاعات وراثتی را شامل می‌شوند و چه طور آنها را منتقل می‌کنند؟ و چگونه می‌توانند رشد کلیه سیستمهای زنده را هدایت نمایند؟


این بار مردی از انگلستان معما را حل نمود. در سال 1928، آزمایشات فرد گریفیث (Fred Griffith) بر روی باکتری های مولد ذات الریه به کشفی حیرت انگیز منجر شد. او دو نوع باکتری مختلف را شناسایی کرد. نوع اول که گریفیث آنها را " نوع S " نامید، دارای یک کپسول پلی ساکاریدی در اطراف خود بودند. نوع دوم یا " نوع R " فاقد این کپسول بود. " نوع S " بیماری زا بود، در حالی که " نوع R " خطری در پی نداشت. در واقع کپسول موجود در اطراف باکتری نوع S باعث مقاومت آن در برابر دستگاه ایمنی بدن می‌شد.


گریفیث سپس مخلوطی از باکتری های S - که با حرارت کشته شده بودند - و باکتری های R تهیه کرد و اثر آن را بر روی موشها بررسی نمود. با اینکه انتظار می‌رفت که این مخلوط اثر زیان باری نداشته باشد، مشاهده شد که تمامی موش‌ها به بیماری مبتلا شده و مردند. جالب اینکه در اجساد موشها باکتری های S زنده یافته شد. گریفیث نتیجه گرفت

که نوعی انتقال بین دو نوع باکتری صورت گرفته است که سبب شده باکتری های نوع R دچار تغییرات ژنتیکی شوند. امروزه ما این پدیده را " ترانسفورماسیون " می‌نامیم.
متأسفانه تحقیقات گریفیث نیز با استقبال معاصران او مواجه نشد و او نتوانست آنها را قانع کند، تا اینکه سرانجام در سال 1941 در یک بمباران هوایی در لندن درگذشت. پنجاه سال بعد، اسوالد اوری (Oswald Avery) در یک موسه تحقیقات طبی در نیویورک آزمایشهای گریفیث را تکرار کرد. اوری و همکارانش مکلئود ( Colin Macleod ) و مک کارتی ( Mc Carty ) به دنبال یافتن عامل ترانسفورماسیون بودند. آنها نشان دادند که اگر مخلوطی از باکتری های S - که با حرارت کشته شده بودند - و باکتری های R و پروتئازها ( آنزیم های تجریه کننده پروتئین‌ها ) تهیه کنیم، باز هم ترانسفورماسیون رخ می‌دهد؛ اما اگر به جای پروتئاز از دی . ان . آز ( آنزیم تجریه کننده DNA ) استفاده کنیم، دیگر شاهد ترانسفورماسیون نخواهیم بود. و این گونه اثبات شد که عامل اصلی ترانسفورماسیون مولکولهای DNA هستند.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید