بخشی از مقاله

مقدمه
يك عنصر هال از لايه نازكي ماده هادي با اتصالات خروجي عمود بر مسير شارش جريان ساخته شده است وقتي اين عنصر تحت يك ميدان مغناطيسي قرار مي گيرد، ولتاژ خروجي متناسب با قدرت ميدان مغناطيسي توليد مي كند. اين ولتاژ بسيار كوچك و در حدود ميكرو ولت است. بنابراين استفاده از مدارات بهسازي ضروري است. اگر چه سنسور اثرهال، سنسور ميدان مغناطيسي است ولي مي تواند به عنوان جزء اصلي در بسياري از انواع حسگرهاي جريان، دما، فشار و موقعيت و … استفاده شود. در سنسورها، سنسور اثر هال ميداني را كه كميت فيزيكي توليد مي كند و يا تغيير مي دهد حس مي كند
ويژگيهاي عمومي
ويژگيهاي عمومي سنسورهاي اثرهال به قرار زير مي باشند
1 - حالت جامد ؛
2 - عمر طولاني ؛
3 - عمل با سرعت بالا-پاسخ فركانسي بالاي 100KHZ ؛
4 - عمل با ورودي ثابت (Zero Speed Sensor) ؛
5 - اجزاي غير متحرك ؛
6-ورودي و خروجي سازگار با سطح منطقيLogic Compatible input and output
7 - بازه دمايي گسترده (-40C ~ +150C) ؛
8 - عملكرد تكرار پذيرعالي Highly Repeatable Operation ؛
9 - يك عيب بزرگ اين است كه در اين سيستمها پوشش مغناطيسي مناسب بايد در نظرگرفته شود، چون وجود ميدان هاي مغناطيسي ديگر باعث مي شود تا خطاي زيادي در سيستم اتفاق افتد
تاريخچه
اثرهال توسط دكتر ادوين هال (Edvin Hall) درسال 1879 در حالي كشف شد كه او دانشجوي دكتراي دانشگاه Johns Hopkins در بالتيمر(Baltimore) انگليس بود.
هال درحال تحقيق بر تئوري جريان الكترون كلوين بود كه دريافت زماني كه ميدان يك آهنربا عمود بر سطح مستطيل نازكي از جنس طلا قرار گيرد كه جرياني از آن عبور مي كند، اختلاف پتانسيل الكتريكي در لبه هاي مخالف آن پديد مي آيد.
او دريافت كه اين ولتاژ متناسب با جريان عبوري از مدار و چگالي شار مغناطيسي عمود بر مدار است. اگر چه آزمايش هال موفقيت آميز و صحيح بود ولي تا حدود 70 سال پيش از كشف آن كاربردي خارج از قلمرو فيزيك تئوري براي آن بدست نيامد.
با ورود مواد نيمه هادي در دهه 1950 اثرهال اولين كاربرد عملي خود را بدست آورد. درسال 1965 Joe Maupin ,Everett Vorthman براي توليد يك سنسور حالت جامد كاربردي وكم هزينه از ميان ايده هاي متفاوت اثرهال را انتخاب نمودند. علت اين انتخاب جا دادن تمام اين سنسور بر روي يك تراشه سيليكن با هزينه كم و ابعاد كوچك بوده است اين كشف مهم ورود اثر هال به دنياي عملي و پروكاربرد خود درجهان بود.
تئوري اثرهال
اگر يك ماده هادي يا نيمه هادي كه حامل جريان الكتريكي است در يك ميدان مغناطيسي به شدت B كه عمود برجهت جريان عبوري به مقدار I مي باشد قرار گيرد، ولتاژي به مقدار V در عرض هادي توليد مي شود.

اين خاصيت در مواد نيمه هادي داراي مقدار بيشتري نسبت به مواد ديگر است و از اين خاصيت در قطعات اثرهال تجارتي استفاده ميشود.
ولتاژها به اين علت پديد مي آيد كه ميدان مغناطيسي باعث مي شود تا نيروي لرنتز برجريان عمل كند و توزيع آنرا برهم بزند[F=q(V´B)]. نهايتا حاملهاي جريان مسير منحني را مطابق شكل بپيمايند.




حاملهاي جريان اضافي روي يك لبه قطعه ظاهر مي شوند، ضمن اينكه در لبه مخالف كمبود حامل اتفاق مي افتد. اين عدم تعادل بار باعث ايجاد ولتاژ هال مي شود، كه تا زماني كه ميدان مغناطيسي حضور داشته و جريان برقرار است باقي مي ماند.

براي يك قطعه نيمه هادي يا هادي مستطيل شكل با ضخامت t ولتاژهايV توسط رابطه زير بدست مي آيد:

KH ضريب هال براي ماده مورد نظر است كه بستگي به موبيليته بار و مقاومت هادي دارد.
آنتيمونيد ايريديم تركيبي است كه در ساخت عنصر اثرهال استفاده مي شود و مقدار KH براي آن 20 است.
ولتاژهال در رنج در سيليكن بوجود مي آيد و تقويت كننده براي آن حتمي است. سيليكن اثر پيز و مقاومتي دارد و بنابراين براثر فشار مقاومت آن تغيير مي كند. در يك سنسور اثر هال بايد اين خصوصيت را به حداقل رساند تا دقت و صحت اندازه گيري افزوده شود. اين عمل با قرار دادن عنصر هال بريك IC براي به حداقل رساندن اثر فشار و با استفاده از چند عنصر هال انجام ميشود. بطوري كه بر هر يك از دو بازوي مجاور مدار پل يك عنصر هال قرار گيرد، در يكي جريان بر ميدان مغاطيسي عمود است و ولتاژ هال ايجاد مي شود و در ديگري جريان موازي با ميدان مغناطيسي مي باشد و ولتاژ هال ايجاد نمي‌شود. استفاده از 4 عنصر هال نيز مرسوم مي باشد.


اساس سنسورهاي اثرهال
عنصرهال، سنسور ميدان مغناطيسي است. باتوجه به ويژگيهاي ولتاژ خروجي اين سنسور نياز منديك طبقه تقويت كننده و نيز جبران ساز حرارتي است. چنانچه از منبع تغذيه با ريپل فراوان استفاده كنيم وجود يك رگولاتور ولتاژ حتمي است.
رگولاتور ولتاژ باعث مي شود تا جريان I ثابت باشد بنابراين ولتاژ هال تنها تابعي از شدت ميدان مغناطيسي مي باشد.
اگر ميدان مغناطيسي وجود نداشته باشد ولتاژي توليد نمي شود. با وجود اين اگر ولتاژ هر ترمينال اندازه گيري شود مقداري غير ا ز صفر به ما خواهد داد. اين ولتاژ كه براي تمام ترمينال ها يكسان است با (CMV) Common Mode Voltage شناخته مي‌شود. بنابراين تقويت كننده بكار گرفته شده مي بايست يك تقويت كننده تفاضلي باشد تا تنها اختلاف پتانسيل را تقويت كند.


مطالبي اضافه در مورد مدارات بهسازي سنسورهاي اثر هال
Applying Linear Output Hall Effect Transducers
Current Sink and Outsource Interface for Solid State Sensors 367k
Interfacing Digital Hall Effect Sensors
Interfacing the SS9 LOHET with Comparators and OP Amps
سنسورهاي هال ديجيتال
در اين سنسورها وقتي بزرگي ميدان مغناطيسي به اندازه مطلوبي رسيد سنسور ON مي شود و پس از اينكه بزرگي ميدان از حد معيني كاهش يافت سنسور خاموش مي شود. لذا در اين سنسورها خروجي تقويت كننده تفاضلي را به مدار اشميت تريگر مي دهند تا اين عمل را انجام دهد، براي جلوگيري از پرش هاي متوالي از تابع هسترزيس زير استفاده مي كنند.

سنسورهاي آنالوگ
سنسورهاي آنالوگ ولتاژ خروجي خود را متناسب با اندازه ميدان مغناطيسي عمود بر سطح خود، تنظيم مي كنند. با توجه به كميت هاي اندازه گيري اين ولتاژ مي تواند مثبت يا منفي باشد. براي اينكه سنسورهاي ولتاژ خروجي منفي توليد نكند و همواره خروجي تقويت كننده تفاضلي را با يك ولتاژ مثبت را پاس مي كنند.

در شكل بالا توجه داريم كه يك نقطه صفر وجود دارد كه در آن ولتاژي توليد نمي شود . از ويژگيهاي اثرهال نداشتن حالت اشباع است و نواحي اشباع در شكل مربوط به آپ امپ در سنسور اثر هال مي باشد .
معمولا خروجي تقويت كننده تفاضلي را به ترانزيستور پوش-پول مي د هند.

سنسور آنالوگ اثر هال

سيستم هاي مغناطيسي
سنسور اثر هال درحقيقت بدين ترتيب عمل ميكند كه توسط يك سيستم مغناطيسي كميت فيزيكي به ميدان مغناطيسي تبديل مي شود. حال اين ميدان مغناطيسي توسط سنسور اثر هال حس مي شود. بسياري از كميت هاي فيزيكي با حركت يك آهنربا اندازه گيري مي شوند. مثلاً دما و فشار را مي توان بوسيله انقباض و انبساط يك Bellows كه به آهنربا متصل است اندازه گيري نمود.

روش هاي مختلفي جهت ايجاد ميدان مغناطيسي وجود دارد.
] Unipolar head-on mode
در اين حالت آهنربا نسبت به نقطه مرجع سنسور حركت مي كند.

همانطور كه در شكل بالا ديده مي شود منحني تغييرات فاصله وميدان مغناطيسي در اين شكل آمده است (منحني بدست آمده غير خطي است) و دقت درحد متوسط است. مثلاً اگر يك سنسور اثرهال ديجيتالي را در نظر بگيريم در اين حالت در فاصله أي كه G1 حاصل مي شود سوئيچ عمل مي كند و On ميشود و وقتي كه فاصله به حدي رسيد كه G1 حاصل شود سوئيچ OFF ميكند.
] Unipolar slide-by mode
در اين حالت آهنربا در يك مسير افقي نسبت به سنسور تغيير مكان مي كند.

منحني تغييرات مكان نسبت به ميدان مغناطيسي بازهم غير خطي است- دقت اين روش كم است و لي حالت تقارني كاملاً ديده مي شود. مثلاً سنسور اثرهال ديجيتالي را در نظر بگيريد كه در اثر ميدان G1 روشن شده و در ميدان G2 خاموش مي شود وقتي آهنربا از سمت راست حركت مي كند و به موقعيت +D1 مي رسد آنگاه سنسور عمل ميكند. اين حركت ادامه مي تواند داشته باشد تا به موقعيت –D2 برسد، در اين هنگام سنسور آزاد مي شود و به همين ترتيب.

] Bipolar Slide –By made
در اين حالت از 2 آهنربا كه قطب S,N هر كدام بصورت ناهمنام در مجاورت هم قرار گرفته است استفاده مي كنيم.

دقت در اين روش درحد متوسط است- حالت تقارن وجود ندارد ولي مي توان در بخش هايي، از خاصيت خطي منحني استفاده نمود. اگر همان سنسور ديجيتالي قبلي را در نظر بگيريم در حركت از راست به چپ وقتي كه فاصله به D2 مي رسد آنگاه سنسور عمل مي كند و تا به مرحله D4 پيش مي رود. بنابراين در يك حركت پيوسته از راست به چپ سنسور در بخش شيب تند عمل مي كند و در بخش شيب كند رها ميكند.
جهت حذف شيب تند در بخش مبدأ از يك تكنيك ديگر استفاده مي شود. بدين ترتيب كه در ميان ايندو آهنربا فاصله معيني قرار مي دهند.

اين عمل بطور چشمگيري دقت را افزايش مي دهد.
حالت ديگري نيز به كار مي‌رود كه در آن منحني حاصل بصورت يك تابع پالس است. در اين روش در ميان دو آهنربا، آهنرباي ديگري قرار مي دهند كه پهناي پالس متناسب با پهناي اين آهنربا مي باشد.

] Bipolar Slide –By mode (ring magnet)
در اين حالت از يك آهنرباي حلقه استفاده مي شود آهنرباي حلقه اي يك قطعه آهنرباي ديسك مانند است كه قطب هاي آن در پيرامون آن قرار دارند. در شكل زير آهنرباي حلقه اي با دو جفت قطب نمايش داده مي شود. به منحني حاصل شيبه به يك منحني سينوسي است. هرچه تعداد قطبهاي آهنرباي حلقه اي بيشتر باشد مقدار پيك حاصل در اندازه ميدان كمتر خواهد بود. تعداد پالس هاي حاصل در اين روش برابر با جفت قطبهاي آهنربا مي باشد. محدوديت در ساخت آهنرباي حلقه اي با جفت قطبهاي زياد، محدوديت اين روش محسوب مي شود.

مقايسه اي از اين سيستمها در زير آمده است :

منظور از All حركتهاي چرخشي، پيوسته و رفت و برگشتي است.

هم اكنون به تشريح برخي از كاربرد هاي سنسورهاي اثرهال مي پردازيم .
سنسورهاي موقعيت تشخيص پره ( Vane Operated Position Sensor)
اين سنسورها گاهاً تحت عنوان سنسورهاي پره شناخته مي شوند و شامل يك آهنربا و يك سنسور اثرهال با خروجي ديجيتالي مي باشند. شكل زير اين دو بخش را در يك بسته نشان ميدهد.

اين سنسور داراي يك فاصله هوايي ميان آهنربا و سنسور اثرهال مي باشد و توانايي موقعيت سنجي خطي و نيز موقعيت سنجي زاوايه اي را نيز دارد.
پره خطي
پره يكنواخت
پره دايروي
اساس عملكرد
شكل مقابل را در نظر بگيريد. وقتي كه پره در فاصله هوايي بين اهنربا وسنسور اثرهال قرار گيرد خطوط شار مغناطيسي پراكنده مي شوند و توسط سنسوراثر هال احساس نمي شوند، بنابراين خروجي سنسور در سطح منطقي صفر (OFF) قرار مي گيرد.


شكل بالا نشان ميدهد كه وقتي كه يك پره ميان اين سنسور مي رود چه اتفاقي مي افتد. درحركت از چپ به راست وقتي لبه جلوي پره به ناحيه b مي رسد، آنگاه سنسور از حالت ON به حالت OFF تغيير وضعيت مي دهد و اين حالت تا زماني كه لبه انتهايي پره به ناحيه d برسد ادامه پيدا مي كند تا در آن لحظه از OFF به ON تغيير وضعيت دهد. بنابراين مدت زماني كه خروجي سنسور OFF است برابر با فاصله بين d ,b بعلاوه پهناي پره مي باشد. درحركت از راست به چپ نيز وضعيت كاملاً مشابه است. در اكثر مواقع پره ها بصورت به هم پيوسته مي باشند. اين حالت در شكل زير در نظر گرفته شده است.

توجه كنيد كه اين دو حالت هيچ تفاوتي باهم ندارند.
رابطه بين مدت زمان OFF ,ON براي حالت پره دندانه اي به پيوسته در جدول زير خلاصه شده است.

نمونه هايي از اين سنسور ها در زير آمده است .
2AV series
4AV series
SR 17 / 16 series

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید