بخشی از مقاله

انرژي هسته اي

راکتور هسته‌ای
دید کلی
راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و بدنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.


تاریخچه
اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.


ساختمان راکتور
با وجود تنوع در راکتور‌ها ، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوختپوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می باشد.


سوخت هسته‌ای
سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها به کار می‌روند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

 

در کنار قابلیت شکافت ، سوخت بکاررفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تامین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد. هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.

غلاف سوخت راکتور
سوخت‌های هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر هم کنش‌های هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.


مواد کند کننده نوترون
یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبیپایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است این ماده خیلی کم بعنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت بعنوان مواد کند کننده استفاده می شوند.


خنک کننده‌ها
گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت موثر باشد همچنین پایداری شیمیایی و سطح مقطع جذب پایین تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

از مایعات و گازها به عنوان خنک کننده استفاده شده‌است گازهای دی اکسید کربن و هیلیوم بعنوان خنک کننده استفاده شده‌اند. هیلیوم ایده‌آل است ولی پرهزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.


مواد کنترل کننده شکافت
برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.


انواع راکتورها
راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با اورانیوم 235 (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.


کاربردهای راکتورهای هسته‌ای
• راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتی‌ها و برخی برای تولید برق بکار می روند.
• دوگروه اصلی راکتورهای هسته ای بر اساس تقسیم بندی کاربرد آنها . راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.


موضوعات مرتبط با عنوان
• آب سنگین
• ایزوتوپهای هیدروژن
• پیل اتمی
• تحقیقات هسته‌ای
• تخریب تشعشعی
• جرم بحرانی
• راکتور اورانیوم طبیعی
• راکتور اورانیوم غنی شده


• راکتور تحقیقاتی
• راکتور تولید نوکلئید
• راکتور حرارتی
• راکتور سوزاننده
• راکتور گازی
• راکتور مایع
• راکتور مبدل و زاینده


• راکتور واسطه
• سوخت راکتور
• سوخت هسته‌ای
• شکافت هسته‌ای
• فیزیک بهداشت
• غلاف سوخت
• رادیو ایزوتوپ
• مواد جاذب نوترون
• مواد کنترل کننده شکافت
• مواد خنک کننده راکتور


• مواد کند کننده نوترون
• مواد رادیواکتیو
• نحوه تولید ایزوتوپها
• نوترون حرارتی
• نوترون سریع
• نیروگاه اتمی
کاربرد راکتورهای هسته ای


• تعریف راکتور هسته ای:
• راکتور هسته ای به عنوان چشمه تولید انرژی‎:
• ‎عناصر فوق اورانیوم‎ :
• ‎‎به دست آوردن مواد رادیواکتیو:
• مباحث مرتبط با عنوان‎:

تعریف راکتور هسته ای:

وسیله ای که در آن واکنش شکافت زنجیری کنترل شده انجام می شود راکتور هسته ای نام دارد. ‏‏اورانیوم یا پلتونیوم ( عنصر پرتوزای مصنوعی با عدد اتمی 94‏‎ ( Z=‎به عنوان ماده شکافت پذیر ‏‏«سوخت هسته ای ) به کار می رود. از راکتور ها جهت تولید انرژی ، برای به دست آوردن ‏‏ایزوتوپ های پرتوزا (از جمله عناصر فوق اورانیوم ، یعنی عناصری و 92‏‎ Z =‎) و چشمه های ‏باریکه های قوی نو ترون استفاده می کنند‎.‎


راکتور هسته ای به عنوان چشمه تولید انرژی‎:

• ‎پاره های شکافت در اورانیوم در فاصله کوتاهی (کمتر ازμm ‏ 5) ‎کند می شوند. در نتیجه ، تقریبا تمامی ‏انرژی آزاد شده در راکتور به صورت گرما در توده اورانیوم ظاهر می شود. از این گرما مثلا می توان ‏برای گرم کردن و تبخیر مایع جاری از اورانیوم که بعدا به کمک ‏‎‎توربین بخار)) یا بعضی از ماشین ‏های گرمایی دیگر به صورت انرژی الکتریکی یا مکانیکی در می آید استفاده کرد‎.‎

 

• ‎اولین نیروگاه هسته ای بر این اساس در سال 1945 در روسیه ساخته شد. ساختمان این راکتور بیانگر ‏این است که بخش اصلی این راکتور عناصر سوختش است که شامل اورانیوم می باشد. عناصر "سوخت" به ‏صورت دو دیوار نازک از لوله های فولادی ضد زنگ ساخته شده اند که یکی‎ ‎توی دیگری قرار دارد‎ .‎

• ‎اورانیوم را بدون درز در فضای میان لوله محکم می کنند، در حالی که از کاواک داخلی به عنوان کانال ‏برای عبور آب استفاده می شود. که گرمای آزاد شده از اورانیوم را در ضمن کار راکتور به خارج می برد. ‏محکم کردن بدون درز از این نظر لازم است که اورانیوم از لحاظ شیمیایی ناپایدار است و دیگر اینکه مانع ‏نشت گاز های پرتوزا خطرناکی شود که در نتیجه واکنش تشکیل می شوند‏‎.‎

 

• ‎برای تسهیل گسترش واکنش زنجیری ، عناصر "سوخت" را از اورانیومی که با ایزوتوب سریعا ‏شکافت پذیر اورانیوم 235 غنی شده اند، درست می کنند «اورانیوم غنی شده که در راکتور مصرف می کنند. ‏دارای 5 درصد‏‎ 235U‎در حالی که اورانیوم طبیعی فقط دارای 0.7 درصد از این ایزوتوپ است ). کار ‏راکتور اورانیوم با پرتوزایی شدید همراه است. جهت حفاظت کارکنان از تابش پرتوزا و نوترون ها که مقادیر ‏زیاد آن نیز زیانبار است، راکتور را در محفظه ای با دیوار های ضخیم که از سیمان و مواد دیگر ساخته ‏شده اند قرار می دهند‎.‎

• ‎امتیاز بزرگ راکتور هسته ای به عنوان چشمه تولید انرژی هزینه کم سوخت آن است. مقدار گرمایی که ‏در ضمن شکافت یک گرم‎ U 235 ‎آزاد می شود برابر با مقدار گرمایی است که از سوختن چند تن ذغال ‏سنگ به دست می آید. این امر امکان می دهد که راکتورها را در نواحی دور از‏‎ ‎ذخایر ذغال سنگ و نفت و حتی ‏دور از راه های حمل و نقل ( با کشتی، زیردریایی و هواپیما ) برپا سازند‎.‎

 

• ‎در روسیه ، چندین نیروگاه اتمی در مقیاس بزرگ در حال کارند. چندین یخ شکن مجهز به ‏موتور های اتمی و زیر دریایی های اتمی نیز ساخته شده است. در آینده نقش ‏‏مهندسی انرژی هسته ای مهم تر از این خواهد شد‎.‎

• ‎محاسبه شده است که با آهنگ امروزی مصرف انرژی کمبود ذغال سنگ و نفت حتی در 50 سال آینده حس ‏خواهد شد. استفاده از اورانیوم راهی برای خروج از این مشکل است. زیرا انرژی ذخیره شده در ذخایر ‏اورانیوم 10 تا 20 برابر انرزی ذخیره شده در سوخت های آلی است. مسئله منابع انرژی پس ‏از مهار شدن واکنش های گداخت به کلی حل خواهد شد‎.‎


‎عناصر فوق اورانیوم‎ :

• ‎درنتیجه بمباران اورانیوم با نوترون ، ایزوتوپ‎ U 238 ‎به‎ U 239 ‎تبدیل می شود. این ایزوتوپ ‏ناپایدار است و در نتیجه واپاشی ««ذره بتا به ایزوتوپ نپتونیوم 93‏‎ ( Np 239 ) ‎تبدیل می شود. این ‏ایزوتوپ به نوبه خود ، با تحمل واپاشی بتا ، پس از زمان کوتاهی ( نیم عمر آن 2.35 روز است ) به ‏ایزوتوپ پلتونیوم 94 ، یعنی‏‎ Pu 239 ‎تبدیل می شود. پلتونیوم 239 نیز ناپایدار است ، ولی به کندی ‏وا می پاشد ( نیم عمر آن 24000 سال است). به این دلیل ممکن است به مقدار انبوهی انبار شود‎.‎

• ‎پلتونیوم 239 مانند اورانیوم 235 ، ( سوخت هسته ای )خوبی است که برای راکتورهای هسته ای و بمب ‏های اتمی مناسب است. پلوتونیوم از راکتورهای هسته ای مبتنی بر اورانیوم طبیعی و کند کننده به دست می ‏آید. در چنین راکتورهایی بیشتر نوترون ها را‎ 238U ‎جذب می کند که نتیجه آن تشکیل پلتونیوم است‎.‎

 

• ‎پلتونیوم انبار شده در اورانیوم را می توان با روش های شیمیایی جدا کرد. سوخت هسته ای مصنوعی ‏دیگر ایزوتوپ‎ 233U با نیم عمر 162000 است که در اورانیوم طبیعی وجود ندارد‏‎. 233U ‎نیز مانند ‏پلتونیوم ، در نتیجه بمباران توریم با نوترون تشکیل می شود. به این طریق مواد با شکافت پذیری کم‎) ‎ 238U و توریم ) می توانند به سوخت هسته ای با ارزش تبدیل شوند. این امکان پذیری بسیار اساسی ‏است زیرا در پوسته زمین‎ 238U ‎و توریم خیلی بیشتر از‎ 236U ‎است‎.‎

• ‎نپتونیم و پلتونیوم معرف عناصر فوق اورانیوم هستند و در جدول تناوبی بعد از اورانیوم می آیند‎.‎

• رشته عناصر فوق اورانیوم بعد از پلتونیوم تا عنصری به عدد اتمی 107 ادامه دارد. عناصر فوق اورانیوم ‏در طبیعت کشف نشده اند. زیرا همه آنها پرتوزا بوده در مقایسه با سن زمین شناسی زمین نیم عمر کوتاهی ‏دارند‎.‎


‎‎به دست آوردن مواد رادیواکتیو:

• ‎در راکتور در حال کار ،جریان شدید نوترون ها در نتیجه شکافت مشاهده می شود. از بمباران مواد ‏با نوترون ها می توان ایزوتوب های پرتوزای مصنوعی گوناگون در راکتور به دست آورد. چشمه پرتوزای دیگر در راکتور پاره های شکافت اورانیوم هستند که اغلب شان ناپایدارند‎.‎

• عناصر پرتوزای مصنوعی کاربرد گسترده ای در علم و صنعت پیدا کرده اند. از موادی که اشعه ‏گاما گسیل می کنند به جای رادیم خیلی گران ، برای امتحان اجسام فلزی کلفت با نور عبوری ، برای ‏‏مداوای سرطان و جز اینها استفاده می شود. ‏

 

• از خاصیت کشنده بودن مقادیر زیاد تابش گاما در موجودات ذره بینی برای نگهداری مواد غذایی استفاده می ‏شود. اکنون از تابش پرتوزا در صنایع شیمیایی استفاده می شود. زیرا انجام بسیاری از واکنش های شیمیایی مهم را آسان می کند‎.‎

• ‎یکی از مهم ترین استفاده ها روش نشانه گذاری اتم هاست. این روش بر این اساس استوار است که ‏ایزوتوب پرتوزا از لحاظ خواص شیمیایی و بسیاری از ویژگی های فیزیکی از ایزوتوپ پایدار همان عنصر ‏غیر قابل تشخیص است. در عین حال، ایزوتوپ پرتوزا را از روی تابش آن (مثلا با‎ ‎استفاده از شمارشگر تخلیه ‏گازی ) می توان شناخت. با افزودن یک ایزوتوپ پرتوزا به عنصر مورد بررسی و آشکار سازی تابش آن ، ‏می توان مسیر این عنصر را در اندام ، در واکنش شیمیایی ، در ضمن ذوب فلزات و جز اینها ردیابی ‏کرد‎.‎


مباحث مرتبط با عنوان‎:

• آشکارساز اتاقک یونیزاسیون
• ‎اشعه گاما‎
• انواع ‎راکتور هسته ای‎
• ‎ایزوتوپهای اورانیوم‎
• اورانیوم غنی شده
• بمباران مواد ‏با نوترون


• مواد رادیواکتیو
• ‎راکتور هسته ای‎
• ‎سوخت هسته ای‎
• ‎شکافت زنجیری‎
• شکافت هسته‌ای
• عناصر رادیواکتیو
• ‎کاربرد هسته ای در پزشکی
• ‎مواد پرتوزا‎
• ‎مهندسی هسته ای
• ‎واکنش زنجیری‎

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید