بخشی از مقاله

سنسور

سنسور دما به نام ترميستور معروفه كه مقاومت متغير توليد ميكنه وغير خطيه اما مدلهایي از سنسورهاي حرارتي هم به نامهاي LM34 و LM35 وجود دارند که بصورت خطی عمل میکنند و با افزایش دما از 0 تا 100 مقاومت اونها از 29 كيلو اهم تا 8/0 كيلو اهم تغيير ميكنه اما خروجي اونها به صورت ولتاژ متغیره تا راحت تر بشه براشون برنامه نوشت. به ازاي هر درجه فارنهايت 10 ميلي ولت ولتاژ توليد ميكنند و بسته به نوعشون تو درجه دماهاي مختلفي كار ميكنند.


براي اتصال هر ADC (مبدل آنالوگ به دیجیتال که سنسورهای حرارتی هم یه نوع از اونهاست) به PC يه IC به نام


ADC804 لازمه تا بتونه سیگنال آنالوگ سنسور رو به مقادیر دیجیتالی تبدیل کنه و به سیستم بفرسته. این IC به پورت سریال کامپیوتر وصل میشه و کل مدار ساختار تقریبآ ساده ای داره که البته یه تنضیمات اولیه ای هم باید رو ورودیها انجام بشه.

بیوسنسورها(سنسورهای دمایی):
اندازه گیریهای متعددی در ارتباط با انرژی حرارتی سیستم بیولوژیک قابل انجام ا

ست.اینها شامل دما،هدایت گرمایی و تشعشع گرمایی هستند.از بین اینها، اندازه گیری دما به طور معمول انجام می شود. دما متغییری فیزیولوژیک است که کیلینیکی اهمیت دارد و یکی از 4 علامت حیاتی اساسی است که در تشخیص کلینیکی بیماران مورد استفاده واقع می شود.
سنسور، مهم ترین جزء یک سیستم اندازه گیری دما است. در واقع یک ابزار دقیق اندازه گیری دما، دمای سنسور را نشان می دهد از این رو، مشکل موجود در اندازه گیریهای پزشکی دما، نگهداشتن سنسور دما دردمای فیزیولوژیکی مورد اندازه گیری است. آسان ترین راه انجام این کار نگهداشتن سنسور دما در تماس مستقیم با ساختاری است که دمایش اندازه گیری می شود. با این حال، این به تنهایی کافی نیست چرا که سنسور دما ممکن است دمای بافت در تماس با خود را تغییر دهد. مثلاً، چنانچه سنسور در ابتدا دمای کمتری نسبت به بافت اندازه گیری شونده داشته باشد زمانی که در تماس مستقیم با آن بافت قرار می گیرد، گرما از بافت به سنسور دما جریان می یابد. اگر انرژی گرمایی هدایت شده به داخل بافت یا انرژی گرمایی تولید شده به روش های متابولیک در بافت، نتوانند جای آن گرما را بگیرند، قرار دادن سنسور دما در تماس مستقیم با بافت آن را سرد می کند و در نتیجه دما غلط قرائت می شود به این دلیل، جرم مٶثر گرمایی سنسور دما همواره باید بسیار کمتر از جرم مٶثر گرمایی بافت مورد اندازه گیری باشد. از این گذشته، مهم است که مقاومت گرمایی بین سنسور واقعی و بافت مورد اندازه گیری حتی الامکان کم باشد.
سنسورهای معمول دما که در ابزارهای دقیق مهندسی پزشکی مورد اس

تفاده اند عبارتند از:
1- ترمیستور 2- سنسورهای دمای مقاومت سیمی فلزی 3- ترموکوپل 4- نیمه هادی اتصالpn5- مواد حساس به دما مانند کریستال های مایع که خواص فیزیکیشان را دما تغییر می دهد. از بین این موارد، ترمیستور معمول ترین سنسور دما در اندازه گیری مهندسی پزشکی

است. این سنسور از اکسیدهای فلزی نیمه هادی تشکیل یافته است که به اندازه ها و اشکال فیزیکی متنوعی درآورده می شوند. این اشکال از ترمیستورهای قیط

انی خیلی کوچک که کروی هستند و قطرهایی به کوچکی mm1 دارند، گرفته تا دیسک های مسطح بزرگی که دارای قطر چند سانتی متر است، تنوع دارند.الکترودها و سیم های رابط، تماس الکتریکی با م

اده ترمیستور را فراهم می نمایند و مقاومت الکتریکی ترمیستور از طریق این تماس ها اندازه گیری می شود. مقاومت الکتریکی مواد نیمه هادی با افزایش دما کاهش می یابد. مواد ترمیستوری را طوری ساخته اند که تغییر در مقاومت در محدوده دمایی موردنظر به حداکثر برسد و در همان حال حد بالایی از پایداری الکتریکی داشته باشند تا از تغییرات مقاومت در اثر دیگر منابع، یا به طور ساده با کهنه شدن خود ماده، جلوگیری شود. رسیدن به چنین خواصی، ساده نیست و از این رو فرمولاسیون واقعی مواد مختلف ترمیستوری که توسط تولیدکنندگان مختلف مورد استفاده قرار می گیرد و همچنین فرایندی که جهت پایدار نمودن خواص الکتریکی آنها استفاده می شود به دقت سرّی نگه داشته می شوند.
دماسنج الکترونیکی کلینیکی مثالی از یک ابزار دقیق اندازه گیری دما

مبتنی بر ترمیستور است. سنسور این ابزار دقیق از یک پروب تشکیل شده که یک ترمیستور دارد. طراحی این پروب، عامل مهمی در عملکرد کل ابزار است. جرم پروب و ترمیستور باید کم باشد تا پاسخ زمانی سریعی بدهد، در عین اینکه پروب باید محکم باشد تا قدرت تحمل استفاده مکرر را داشته باشد. بنابراین یک ترکیب مهندسی ضروری است چرا که این دو نیازمندی معمولاً با هم مخالف هستند. از این گذشته، چنانچه ابزار دقیق برای افراد مختلف بکار

رود، تمیز کردن و استریلیزه نمودن پروب بعد از هر بار استفاده عملی نیست. پس یک پوشش حفاظتی استریلیزه و یکبار مصرف پروب را می پوشاند که برای استفاده هر بیمار عوض می شود. همچنین این پوشش باید جرم گرمایی کم و هدایت گرمایی بالا داشته باشد تا از خراب شدن پاسخ زمانی ابزار جلوگیری نماید. همچنین باید محکم باشد تا گسیختگی که عملکرد آن را از بین می برد روی پروب قرار گیرد.
هدف مدار الکترونیک پردازش سیگنال در این ابزار دقیق تبدیل مقاومت الکتریکی ترمیستور به ولتاژ مرتبط با دمای آن و آماده سازی این ولتاژ برای وسیله قرائت که معمولاً یک صفحه دیجیتالی نمایش دهنده دما است، می باشد. یک مدار پل و تستون نامتعادل که یک ضلع آن را ترمیستور تشکیل می دهد، این هدف را محقق می کند. چنانچه چنانچه پل به طور مناسب طراحی گردد، غیرخطی بودن ولتاژ خروجی پل و تستون به عنوان تابعی از مقاومت می تواند غیرخطی بودن ترمیستور را در یک محدوده دمایی معین(حداکثر تا 40 درجه سانتی گراد) جبران کند، طوری که ولتاژ خروجی پل رابطه خطی با دما داشته باشد. بقیه مدار الکترونیکی باید این سیگنال را طوری مقیاس دهی کند که خروجی دستگاه عدد صحیح را که با دمای مورد اندازه گیری مطا

بق است نشان دهد.
کارایی دیگری که در بعضی دماسنجهای الکترونیکی هست، مداری است که نشان می دهد چه زمان سنسور دما به تعادل رسیده است تا دما خوانده شود. چنین مداری هر ثانیه دما را بررسی می کند و قرائت نهایی را با چند تای قبلی مقایسه می کند. اگر اختلافها کمتر از 1/0 سانتی گراد باشد، دما ثابت درنظر گرفته می شود و به اپراتور گفته می شود که می تواند دما را بخواند، این کار معمولاً با یک بوق کوتاه انجام می شود.


دیگر ابزارهای دقیق دما که قبلاً ذکر شد همگی براساس همین نوع ابزار دقیق هستند، چون اندازه گیری رسانایی گرمایی، شار گرمایی و تشعشع شامل انجام اندازه گیری اهی دمایی است. این سیگنال را طوری پردازش می کنند که کمیت موردنظر را براساس طرح سنسور ارائه دهد.

سنسورهايي از نوع ذرات بيولوژيک


در سالهاي اخير كاربردهاي زيست‌ فناوري و پزشكي فناوري ميكرو ونانو (كه معمولا از آن به عنوان سيستم‌هاي ميكروي الكتريكي مكانيكي پزشكي يا زيست‌ فناوري‎(BioMEM) 1‏ نام برده مي‌شود) به‌صورت فزاينده‌اي رايج شده است و كاربردهاي وسيعي همچون تشخيص و درمان بيماري و مهندسي بافت پيدا كرده است. در حين اين كه تحقيقات و گسترش فعاليت در اين زمينه هم چنان به قوت خود باقي است، بعضي از اين كاربردها تجاري هم مي‌شود. در اين مقاله پيشرفت‌هاي اخير در اين زمينه را مرور كرده و خلاصه‌اي از جديدترين مطالب در حوزه ‏BioMEM ‎‏ را با تمركز روي تشخيص و حسگرها ارائه مي‌شود.‏
بيوسنسور‌ها
در كاربردهاي بسياري در پزشكي، تحليل محيطي و صنايع شيميائي نياز به روشهايي جهت حس كردن مولكولهاي زيستي كوچك وجود دارد. حس‌هاي بويايي و چشايي ما دقيقا همين كار را انجام مي‌دهد و سيستم ايمني بدن ميليونها نوع مولكول مختلف را شناسائي مي‌كند. شناسائي مولكولهاي كوچك تخصص بيومولكولها است، لذا اينها شيوه جديد و جذابي براي ساخت سنسورهاي خاص را پيش رو قرار مي‌دهد. دو مولفه اساسي در اين راستا وجود دارد. المان شناساگر و روش‌هايي براي فراخواني زماني كه المان شناساگ

ر هدف خودش را پيدا مي‌كند. اغلب المان شناساگر تحت تاثير منبع زيست‌ فناوري تغيير نمي كند. مشكل اصلي در اين كار طراحي يك واسطه مناسب به يك وسيله بازخواني بزرگ است.
از آنتي بادي‌ها به صورت گسترده به عنوان بيوسنسور استفاده مي‌شود. آنتي بادي‌ها بيوسنسورهاي پيشتاز در طبيعت است، به همين دليل توسع

ه تستهاي تشخيصي با استفاده از آنتي باديها، يكي از زمينه‌هاي بسيار موفق در بيوفناوري است. شايد آشناترين مثال تست ساده‌اي است كه براي تعيين گروه خوني استفاده مي‌شود.
بوسنسورهاي گلوكز از موفق ترين بيوسنسورهاي موجود در بازار است. بيماران مبتلا به ديابت نياز به شيوه‌هاي مرسوم جهت پايش سطح گلوكز خود دارد. سنسورهاي قابل كاشت و غير تهاجمي در حال توسعه است، اما در حال حاضر در دسترس‌ترين شيوه بيوسنسور دستي است كه يك قطره از خون را تحليل مي‌كند.

اصول و مبانی ترمیستورها:
ترمیستور از مواد نیمه هادی ساخته می شود. ترمیستور از اکسید فلزاتی چون منگنز، نیکل، کبالت، مس و یا آهن همراه با سیلیکون ساخته می گردد. رنج دمای آن 50- تا 150 و نهایت 300 درجه سانتیگراد می باشد. در بیشتر مصارف مقاومت آن در دمای 25 درجه سانتیگراد( در RTD مقاومت آن نسبت به صفر درجه محاسبه می شد در ترمیستورها نسبت به 25 درجه سانتیگراد محاسبه می شود.) بین 100 تا 100کیلو اهم می باشد. البته ترمیستورهایی با مقاومت اولیه پایین تر از 10اهم و بالاتر از 40مگا اهم نیز استفاده می شود.
ترمیستورها به دو نوع تقسیم می شوند(Negative Temperature Coefficient NTC که با افزایش دما مقاومت آن کاهش می یابد و(Positive Temperat

ure Coefficient) PTC که با افزایش دما مقاومت آن کاهش می یابد.
ترمیستور نوع NTC حساسیت 3- % تا 6- دارد که در مقایسه با RTD خیلی بالاتر است که باعث گشته سیگنال پاسخ بهتری نسبت به ترموکوپل و RTD داشته باشد، از جهت دیگر حساسیت پایین RTD و ترموکوپل آنها را انتخاب خوبی برای دماهای بیش از 260 درجه سانتیگراد کرده است و این محدودیتی برای ترمیستور است.ن انگلیسی گزارشی در مورد رفتار نیمه هادی سولفید نقره داد، که این جرقه اولیه پیدایش ترمیستور بود. به خاطر محدودیتی که ترمیستور در سختی تولید و کاربرد در صنعت داشت تولید تجاری و استفاده از آن تا صد سال بعد انجام نشد و از سال 1980 استفاده از ترمیستور به صورت گسترده شروع شد.

مدار بهسازی
برای تبدیل مقاومت ترمیستور به ولتاژ می توان از مدار پل استفاده نمود ولی به دلیل مشخصه غیر خطی ترمیستور، خطای غیر خطی مدار پل تاثیر می گذارد که در صورت استفاده از مدار پل باید این موضوع لحاظ شود.
روش دیگر استفاده از مدار تقسیم ولتاژ است.که به دلیل مقاومت زیاد ترمیستور راه حل مناسبی می باشد.
روش دیگر استفاده از مدار زیر است.میکروکنترلر PIC12C508 که توضیح داده می شود.

روش دیگر استفاده از مدار پایین است که روشی مشابه تقسیم ولتاژ می باشد. در این روش OP. Amp با نسبت مقاومت ترمیستور به Rs ولتاژ خروجی را تولید می کند.

یک کار دیگر استفاده از مدار مجتمع AD7711 است که یک A/D می باشد.

یک نوع سنسور:
ترمیستور: متداول ترین حسگر در خودرو برای اندازه گ

یری حرارت ترمیستور میباشد که در این حسگرها تغییر دما عامل تغییر مقاومت درون این حسگرها است.بیشتر ترمیستورهای متداول ضریب دمایی منفی دارند یعنی با افزایش دما مقاومت انها کاهش پیدا میکند.واکنش ترمیستورهای مورد استفا

ده در اتومبیل نسبت به تغییر دما به این صورت است که از چند کیلو اهم در صفر درجه سانتیگراد تا چندصد اهم در ۱۰۰ درجه سانتیگراد میرسد .
ترمیستورها از مواد نیمه رسانا مانند اکسیدهای کبالت بانیکل ساخته میشوند.تغییر مقاومت در اثر تغییر دما نتیجه ازاد شدن اسانتر الکترونها از پیوند کووالانسی در هنگام بالا رفتن دماست.با افزایش دما مقاومت ترمیستور به صورت غیر خطی طبق رابطه زیرکاهش میابد.

R=Ae
که در فرمول فوق R مقاومت ترمیستور است T دمای مطلق کلوین است B دمای مشخصه ترمیستورA ثابت ترمیستور میباشد

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید