بخشی از مقاله

افکار فیثاغورث ریاضیدان و فیلسوف یونانی به شکل گیری ریاضیات نوین و فلسفه غرب کمک کرده است . هدف او توضیح همه پدیده های طبیعی بر اساس ریاضیات بود . فیثاغورث بیش از هر چیز برای فرمولی که در مورد نسبتهای اضلاع مثلث راست گوشه ارائه کرده است معروف است. مفاهیم متعدد دیگری (مانند تصاعدهای حسابی و هندسی و عددهای مربع کامل ) که برای ریاضیات نوین نقش زیر بنایی دارند بر افکار فیثاغورث مبتنی هستند . فیثاغورث و پیروان او ریاضیات هماهنگ ها را که مبنای موسیقی امروز غرب را تشکیل می دهد ابداع کردند.


حدود 580ق.م فیثاغورث در ساموس یونان به دنیا می آید.
حدود 532 ق.م برای فرار از حکومت جابر ساموس به جنوب ایتالیا سفر می کند.
حدود 525 ق.م یک آکادمی را در کروتون (که اکنون کروتونا نام دارد) تاسیس می کند . این آکادمی یک مدرسه و یک مکتب برادری مذهبی مبتنی بر اصول اخلاقی و فلسفی معینی است ، که در آن همه برادران می بایستی وفاداری و رازداری را رعایت کنند . در ریاضیات ،فیثاغورث و پیروان او با آرایشهای مختلف دسته هایی از ریگ آزمایش می کنند و در می یابند که دنباله های منظمی از اعداد پدید می آید. مثلاَ شکلهای مثلثی دنباله 10،6،3،1،... و شکلهای مربعی دنباله 16،9،4،1،... را ایجاد می کنند.

کلمه calculate به معنی محاسبه (از calculus به معنی «سنگریزه» و نیز اصطلاح مربع (توان دوم) از این کاربرد ریگها اقتباس شده است . در هندسه ، آنها در می یابند که مجموع زوایای یک مثلث همیشه 180 درجه است.
آنها همچنین این قضیه معروف را ارائه می کنند که مربع وتر یک مثلث راست گوشه برابر مجموع مربهای دو ضلع دیگر ان است . در موسیقی ، فیثاغورث و پیروان او با آزمایش بر روی تارهای کشیده شده ریاضیات اکتاوها را ابداع می کنند (هرگاه طول تاری را نصف کنیم ، نتی را که یک اکتاو پایینتر است ایجاد می کند،) در اخترشناسی ، آنها این نظریه را مطرح می کنند که جهان کروی است و زمین نیز کره ای در مرکز آن است. خورشید به طور سالانه و روزانه به دور آسمان می چرخد ، و ماه و سیاره ها نیز به همین ترتیب رفتار می کنند. فیثاغورث در آسیای صغیر (ترکیه امروز) به سفرهای وسیعی می پردازد و در آنها با بعضی از ریاضیدانان و فیلسوفان برجسته ان زمان تبادل نظر می کند.
حدود 500ق.م در متاپونتوم (نزدیکی متاپونتوی امروز) در ایتالیا می میرد.
فیثاغورث (در یونانی Πυθαγορας) (زادهٔ حدود ۵۶۹ (پیش از میلاد) - درگذشتهٔ حدود ۴۹۶ (پیش از میلاد)). از فیلسوفان و ریاضیدانان یونان باستان بود. شهرت وی بیشتر بخاطر ارائه قضیهٔ فیثاغورث است. وی را یونانیان یکی از هفت فرزانه بشمار می‌آوردند.


زندگی
فیثاغورث در جزیره ساموس، نزدیک کرانه‌های ایونی، زاده شد. او در عهد قبل از ارشمیدس، زنون و اودوکس (۵۶۹ تا ۵۰۰ (پیش از میلاد)) می‌زیست.
او در جوانی به سفرهای زیادی رفت و این امکان را پیدا کرد تا با مصر، بابل و مغان ایرانی آشنا شود و دانش آنها را بیاموزد. به طوری که معروف است فیثاغورث، دانش مغان را آموخت. او روی هم رفته، ۲۲ سال در سرزمین‌های خارج از یونان بود و چون از سوی پولوکراتوس، شاه یونان، به آمازیس، فرعون مصر سفارش شده بود، توانست به سادگی به رازهای کاهنان مصری دست یابد. او مدتها در این کشور به سر برد و در خدمت کاهنان و روحانیون مصری به شاگردی پرداخت و آگاهی‌ها و باورهای بسیار کسب کرد واز آنجا روانه بابل شد و دوران شاگردی را از نو آغاز کرد.


وقتی او در حدود سال ۵۳۰، از مصر بازگشت، در زادگاه خود مکتب اخوتی ( که امروزه برچسب مکتب فیثاغورث بر ان خورده است ) را بنیان گذاشت که طرز فکر اشرافی داشت. هدف او از بنیان نهادن این مکتب این بود که بتواند مطالب عالی ریاضیات و مطالبی را تحت عنوان نظریه‌های فیزیکی و اخلاقی تدریس کند و پیشرفت دهد.
فیثاغورث نیز به مانند سقراط جانب احتیاط را نگاه داشت و چیزی ننوشت . تعالیم وی از طریق شاگردانش به دست ما رسیده است . اکنون روشن شده است که که شاگردان فیثاغورث ، باعث و بانی بخش اعظمی از لباس چهل تکه تفکر ، اداب و رسوم ، ریاضیات ، فلسفه و اندیشه های عجیب و غریبی هستند که در مکتب فیثاغورث موجود می باشد. در واقع ، قضیه ی مشهور فیثاغورث در باب مجذور وتر ، به احتمال قریب به یقین به دست خود فیثاقورث کشف نشده است ( این حرف بدین معناست که خود فیثاغورث هم قضیه فیثاغورث را نمیفهمید ، و این برای کسانی که ریاضیدان نیستند ، اسباب دلگرمی و امیدبخش است ! )


شیوه تفکر این مکتب با سنت قدیمی دموکراسی، که در آن زمان بر ساموس حاکم بود، متضاد بود. و چون این مشرب فلسفی با مذاق مردم ساموس خوش نیامد، فیثاغورث به ناچار، زادگاهش را ترک گفت و به سمت شبه جزیره آپتین (از سرزمینهای وابسته به یونان) رفت و در کراتون مقیم شد.
در افسانه‌ها چنین آمده است که متعصبان مذهبی و سیاسی، توده‌های مردم را علیه او شوراندند و به ازای نور هدایتی که وی راهنمای ایشان کرده بود مکتب و معبد او را آتش زدند و وی در میان شعله‌های آتش جان سپرد.
این جمله معروف را دوستدارانش در رثای او گفته‌اند: «Sic transit gloria mundi» یعنی «افتخارات جهان چنین می‌گذرند».
وی نظرات ریاضی خویش را با ترهات فلسفی و باورهای دینی درهم آمیخته بود. او در عین حال هم عارف و هم ریاضیدان بود و بقولی یکدهم شهرت او نتیجه نبوغ وی و مابقی ماحصل ارشاد و رسالت اوست.


فیثاغورث و مسئلهٔ استدلال در ریاضیات
برای آنکه نقش فیثاغورث را در تبیین اصول ریاضیات درک کنیم، لازم است کمی درباره جایگاه ریاضیات در عصر وی و پیشرفتهایی که تا زمان وی صورت گرفته بود، بدانیم که این هم به نوبه خود، در خور توجه است. جالب است بدانید با اینکه مبنای ریاضیات بر «استدلال» استوار است، قبل از فیثاغورث هیچ کس نظر روشنی درباره این موضوع نداشت که استدلال باید مبنی بر مفروضات باشد. به عبارتی استدلال، مسئلهٔ تعریف شده‌ای نبود.
در واقع می‌توان گفت بنا به قول مشهور، فیثاغورث در بین اروپاییان اولین کسی بود که روی این نکته ا صرار ورزید که در هندسه باید ابتدا «اصول موضوع» و «اصول متعارفی» را معین کرد و آنگاه به اتکاء آنها که «مفروضات» هم نامیده می‌شوند، روش استنتاج متوالی را پیش گرفت به پیش رفت. از نظر تاریخی «اصول متعارفی» عبارت بود از «حقیقتی لازم و خود بخود واضح».


اینکه فیثاغورث استدلال را وارد ریاضیات کرد، از مهم‌ترین حوادث علمی است و قبل از فیثاغورث، هندسه عبارت بود از مجموعه قواعدی که ماحصل تجارب و ادراکات متفرق بوده‌اند؛ تجارب و قواعدی که هیچگونه ارتباطی با هم نداشتند حتی کسی در آن زمان حدس نمی‌زد مجموعهٔ این قواعد را بتوان از عدهٔ بسیار کمی اصول نتیجه گرفت. در صورتی که امروزه حتی تصور این موضوع که ریاضیات بدون استدلال چه وضع و حالی داشته است برای ما ممکن نیست. اما در آن عصر این موضوع گام بلندی به سوی نظام قدرتمند هندسه محسوب می‌شد.

مجمع فیثاغوری
بنیان فلسفی مجمع فیثاغوری بر آموزش رازهای عدد قرار داشت. به اعتقاد فیثاغورثیان، عدد، بنیان هستی را تشکیل می‌‌دهد، علت هماهنگی و نظم در طبیعت است، رابطه‌های ذاتی جهان ما، حکومت و دوام جاودانی آن را تضمین می‌کند. عدد، قانون طبیعت است، بر خدایان و بر مرگ حکومت می‌‌کند و شرط هرگونه شناخت و دانشی است. چیزها، تقلید و نمونه‌ای از عدد هستند.
چنین برداشت ستایش‌آمیزی از عدد، با خیال‌بافی‌های اسرارآمیزی درآمیخته بود، که همراه با مقدمه‌های ریاضی، از کشورهای خاورنزدیک اقتباس شده بود.


فیثاغوریان، ضمن بررسی نواهای موزون و خوش‌آهنگی که در موسیقی به دست می‌آید، متوجه شدند که آهنگ موزون روی صدای سه سیم، زمانی به دست می‌آید که طول این سیم‌ها، متناسب با عددهای ۳ و ۴ و ۶ باشد. فیثاغوریان این بستگی عدد را در پدیده‌های دیگر نیز پیدا کردند. از جمله، نسبت تعداد وجه‌ها، راسها و یال‌های مکعب هم برابر است با نسبت عددی ۶:۸:۱۲.


همچنین فیثاغوریان متوجه شدند که اگر بخواهیم صفحه‌ای را با یک نوع چندضلعی منتظم بپوشانیم، فقط سه حالت وجود دارد؛ دور و بر یک نقطه از صفحه را می‌توان با ۶ مثلث متساوی‌الاضلاع، با ۴ مربع، و یا با ۳ شش‌ضلعی منتظم پر کرد، به طوری که دور و بر نقطه را به طور کامل بپوشاند. همانطور که مشاهده می‌شود، تعداد این چندضلعی‌ها با همان نسبت ۳:۴:۶ مطابقت دارد و اگر نسبت تعداد اضلاع این چندضلعی‌ها را در نظر بگیریم، به همان نسبت ۳:۴:۶ می‌رسیم.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید