بخشی از پاورپوینت
اسلاید 2 :
((پیشگفتار))
*پیش درآمد:
در درس مکانیک تحلیلی که مربوط به حرکت اجسام صلب بود , با اصول و قوانین نیوتن , پایستگی تکانه , انرژی و تکانه ی زاویه ای به خوبی آشنا شدیم و آنها را در حل مسایل مربوطه بکار بریم . مکانیک سیالات نیز بخشی از علم مکانیک است که در آن استاتیک و دینامیک مایعات و گازها مطالعه میشود .اگرچه این مطالعات نیز مانند مکانیک اجسام صلب بر اساس قوانین اصلی مکانیک استوار است ولی دو فرق عمده و مهم بین این دو مکانیک وجود دارد:
اسلاید 3 :
1. خواص و ویژگیهای سیالات با جامدات سبکی متفاوت است و این ویژگی ها اغلب با حرکت سیال تغییر می کند .
2. در مکانیک جامدات معمولا حرکت اجسامی با جرم و ابعاد مشخص بررسی میشود ولی در مکانیک سیالات مطالعه ی حرکت پیوسته ی سیال , به صورت یک جریان مورد نظر می باشد. به بیان دیگر در مکانیک اجسام صلب مسیر حرکت ذره مشخص است ولی در مکانیک سیالات این مسیر نا مشخص و امکان مطالعه ی حرکت ذره ی منفرد وجود ندارد . در نتیجه با توجه به نکات بالا حل کامل معادلات حرکت سیالات معمولا امکان پذیر نیست و در معادلات نظری آن ضروری است که فرض هایی در نظر گرفته شود تا در عمل این معادلات به معادلات آسانتری تبدیل شود . بنابراین استفاده از نتایج نظری بدست آمده هنگامی مسیر خواهد شد که آنها را با آزمایشهای تجربی تصحیح و تکمیل کرد .
اسلاید 4 :
* فصل 1
ویژگی های سیال
1-1 مقدمه:
دانش فناوری مکانیک سیالات با درک و مفاهیم ویژگی های سیال و همچنین بکارگیری قوانین اساسی مکانیک و ترمودینامیک و انجام آزمایشهای دقیق بسیار گسترش یافته است .
ویژگی چسبندگی و چگالی در جریان داخل کانالهای باز و بسته و جریان در پیرامون اجسام شناور در سیال نقش عمده ای در مکانیک سیالات دارد . به هنگامی که با کاهش فشار روبرو هستیم , فشار بخار نیز که موجب تغییر فاز (حالت) مایع به گاز می شود , اهمیت می یابد .
در این فصل ابتدا به تعریف سیال و سیستم بین المللی یکاها (SI) و سپس به بررسی ویژگی ها و تعریف های فوق می پردازیم .
اسلاید 5 :
2-1 تعریف سیال:
سیال ماده ای است که در اثر تنش برشی حتی ناچیز به طور دائم تغییر شکل می دهد . تنش برشی متوسط برابر با تقسیم نیروی برشی بر سطح است .
توجه داریم که نیروی برشی همان مولفه ی مماسی نیرو بر سطح مزبور می باشد . حال اگر این سطح آنقدر کوچک شود که به یک نقطه تبدیل شود آنگاه حد نیروی برشی بر این سطح نقطه ای را تنش برشی در یک نقطه می گویند .
اسلاید 6 :
در شکل (1-1) ماده ای در بین دو صفحه موازی و نزدیک بهم نشان داده شده است .فرض می کنیم صفحات آنقدر بزرگ باشند تا از شرایط لبه های آنها بتوان صرف نظر کرد . اگر صفحه ی پایین ثابت باشد و نیروی F صفحه یبالا به مساحت A را بکشد . در نتیجه F/A همان تنش برشی بر این ماده است.
هنگامی که نیروی F باعث شود صفحه ی بالایی با سرعت یکنواخت (اما مخالف صفر) حرکت کند, می توان نتیجه گرفت که ماده ی موجود بین دو صفحه مذبور , یک سیال است .به طور تجربی معلوم شده است که ذرات سیال مجاور صفحات , سرعتی برابر با سرعت لایه های مرزی خواهند داشت . سیال موجود در سطح abcd به موقعیت جدید a b'c'd' می رسد.
اسلاید 7 :
هر ذره سیال موازی صفحه حرکت می کند , بنابراین سرعت u از صفحه پایین که سرعت آن صفر است تا صفحه بالایی که سرعتش U می باشد , تغییر می کند . آزمایش نشان می دهد اگر سایر کمیات ثابت باشد F با A , U نسبت مستقیم و با ضخامت سیال نسبت عکس دارد . یعنی داریم :
F= µ AU/t
که در آن µ ضریب تناسب است و مربوط به ویژگی های هر سیال می شود . اما اگر تنش برشی را به صورت زیر در نظر بگیریم Z=F/A
آنگاه داریم :
Z = µ U / t
اسلاید 8 :
توجه داریم , نسبت u/t , همان سرعت زاویه ای خط ab یا به بیان دیگر میزان کاهش زاویه ای bad است .اما نسبت u/t , du/dy هر دو حاصل تقسیم تغییرات سرعت بر مسافتی می باشد که این تغییرات در طول آن انجام می گیرد . بنابراین رابطه ی (1-1) را می توان به صورت رابطه ی دیفرانسیلی زیر درآورد:
du/dt µ =Z رابطه ی بالا , نشان دهنده ی ارتباط تنش برشی با سرعت تغییر شکل زاویه ای یک جریان تک بعدی است .
µضریب تناسب را چسبندگی سیال و معادله (2-1) را قانون چسبندگی نیوتن می نامند .توجه داریم تعریف سیال , مواد غیر سیال را شامل نمی شود . به طور مثال یک ماده ی پلاستیکی متناسب با مقدار نیروی وارد بر آن به میزان معینی تغییر شکل می دهد ولی این تغییر شکل دائمی نیست .
اسلاید 9 :
3-1 یکاهای نیرو ، جرم ، طول و زمان
در حل مسایل مکانیک , یکاهای نیرو , جرم , طول و زمان نقش مهمی دارند . همچنین از این یکاها می توان , یکاهای دیگر را بدست آورد .
سیستم بین المللی یکاها (SI) , در اغلب کشورهای جهان پذیرفته شده است و در چند سال آینده انتظار می رود که تمامی کشورها این سیستم را بپذیرند و از آن استفاده کنند . در این سیستم نیوتن N یکای نیرو , کیلوگرم Kg یکای جرم , مترm یکای طول و ثانیه S یکای زمان است.و یک نیوتن به صورت زیر تعریف میشود:
(3-1) N = 1 Kg m/s2
نیرویی که به علت جاذبه بر جسمی وارد می شود را نیروی گرانش یا وزن آن جسم می نامند .
اسلاید 10 :
توجه داریم که جرم یک جسم با تغییر مکان یا محل تغییر نمیکند ولی نیروی گرانش یا وزن جسم تغییر میکند زیرا این نیرو برابر با حاصل ضرب جرم جسم در شتاب جاذبه g بدست می آید .
(4-1) F=mg در سیستم بین المللی یکاها , شتاب گرانش استاندارد برابر با 9/806 m/s2 میباشد .
در این درس علائم اختصاری سیستم یکای SI با حروف کوچک مانند ساعت h , متر m و ثانیه s نشان داده می شود . برای بعضی از یکاها در این سیستم از حرف اول اسامی دانشمندان استفاده می شود :
وات W ، پاسکال Pa ، نیوتن N و . . .اهمیت این سیستم در استفاده از مضارب 10 یا 10/1 به صورت پیشوند است . در جدول (1-1) پیشوندهایی که کاربرد بیشتری دارند آمده است .
اسلاید 11 :
4-1 چسبندگیدر بررسی جریان یک سیال , چسبندگی سیال حائز اهمیت است . در این بخش راجع به طبیعت و ویژگیهای چسبندگی ,ابعاد , ضرایب تبدیل , چسبندگی مطلق و چسبندگی سینماتیکی بحث خواهیم کرد .چسبندگی ویژگی از سیال است که به علت آن , سیال در مقابل تنش برشی از خود مقاومت نشان میدهد . از قانون چسبندگی نیوتن معلوم می شود که برای یک تغییر شکل زاویه ای , تنش برشی با لزجت نسبت مستقیم دارد . به طور مثال قیر از مایعاتی با چسبندگی زیاد است , در صورتیکه هوا و آب از سیالاتی با چسبندگی کم می باشند .از آزمایش معلوم شده است که چسبندگی گازها با افزایش دما , زیاد می شود در صورتیکه برعکس چسبندگی مایعات با افزایش دما, کاهش می یابد .
اسلاید 12 :
مقاومت یک سیال در برابر نیروی برشی به جاذبه مولکولی و میزان انتقال تکانه ی مولکولها بستگی دارد . در مایعات به دلیل کوچکی فواصل بین مولکولها , نیروی جاذبه ی مولکولی به مراتب از گازها بیشتر است . چنین به نظر می رسد که علت اصلی وجود چسبندگی در مایعات , جاذبه ی مولکولی است , زیرا با افزایش دما , جاذبه مولکولی کم میشود و چسبندگی نیز کاهش می یابد .اما در مورد گازها , نیروهای جاذبه مولکولی بسیار اندک است , بنابراین آنچه باعث مقاومت در مقابل تنش برشی م یشود همان انتقال تکانه ی مولکولی آنهاست .در فشارهای معمولی , چسبندگی مستقل از فشار است و فقط تابعی از دما می باشد ولی در فشارهای بالا , چسبندگی گازها و برخی از مایعات با تغییر فشار , تغییر می کند .
اسلاید 13 :
در یک سیال چه در حالت سکون و چه در حالت حرکت , اگر دو لایه مجاور نسبت به یکدیگر حرکتی نداشته باشند , هیچ نوع تنش برشی ایجاد نخواهد شد , زیرا مقدار du/dy در کل سیال برابر صفر می باشد . بنابراین به هنگام بررسی ایستایی سیالات , فقط تنش های عمودی یا فشار مورد توجه خواهند بود .ابعاد چسبندگی را می توان از قانون چسبندگی نیوتن ( معادله 2-1) بدست آورد :µ = Z/(du/dy)
اسلاید 14 :
5-1 محیط پیوسته
در بررسی جریان سیالات , ساختمان واقعی مولکولی را می توان به شکل یک فضــای پیوسته در نظر گرفت که آن را محیط پیوسته می نامند . به عنوان مثال , سرعت در هر نقطه در فاصله بین دو مولکول برابر با صفر است و زمانی دارای سرعت می شود که مولکولی دیگر این فاصله خالی را اشغال کنـد . در محاسبه ی ویژگیهای سیال , می توان علاوه بر نظریه ی مولکـولی همـراه با حرکات مولکولی , روابط پیوستـگی را نیز مورد استفاده قرار دارد.
اسلاید 15 :
در گازهای رقیق, مانند آتمسفر در ارتفاع 80km از سطح دریا , از نسبـت پویـش آزاد متوسط گاز به عنوان یکی از شاخـص های طولی جسم یا مجرای عبور گاز جـهت تشخیص نوع جریان استفاده به عمل می آید .پویش آزاد متوسط برابر با مسافت متوسطی است که یک مولکول بین دو برخورد متوالی طی می کند .
هنگامی که نسبت پویش آزاد متوسط خیلی کوچک باشد , رفتار جریان گاز رادینامیک گازها می گویند و رفتار لحظات بعدی را جریان لغزشی می نامند . اگر این نسبت خیلی زیاد باشد , حرکت را جریان آزاد مولکولی می نامند . ما در این درس فقط دینامیـک گازها را مورد مطالعه قرار خواهیم داد . همچنین فرض می شود کمیات چگالی , جسم مخصوص , سرعت و شتاب در تمامی سیال به طور پیوسته تغییر کند یا ثابت باشد .
اسلاید 16 :
6-1 چگالی , حجم مخصوص , وزن مخصوص , چگالی مخصوص و فشارچـگالی سیال را معـادل جـرم در واحد حجـم تعریف می کنند و تعریف چـگالی در یک نقطه عبارتست ازحد جرم کوچکی از سیال m Δتقسیم به حجم بسیار کوچکv Δ به هنگامی که v Δ به سمت میل کند , توجه داریم ε مقدار کوچکی است که در مقایسه با فاصله ی بین مولکولها بازهم بزرگ می باشد . = ρ (7-1) چگالی آب در فشار استاندارد 760mmHg و دمای 4`c برابر با 1000Kg/m3 است .
اسلاید 17 :
Vs حجم مخصوص برابر با وارون چگالی می باشد و در واقع حجم اشغـال شده توسـط واحد جرم سیال را حجم مخصوص می نامند . یعنی :(8-1) ρ Vs = 1/نیروی گرانش واحد برای یک جسم ، همان نیروی گرانش در واحد حجـم جسم می باشد که مقدار آن با تغییر مکان یا محل , تغییر می کند و بستگی به شتاب جاذبه محیط دارد
اسلاید 18 :
چگالی نسبی S یک جسم در شرایط استاندارد , نسبت جرم جسم به جرم آب هم حجم آن می باشد و به صورت نسب چگالی آب نیز بیان می شود .
فشار , متوسط برابر با تـقسیم نیروی محوری موثر وارد بر سطـح به مساحت آن سطح بدست م یآید . فشار در یک نقطه از نسبت نیروی عمودی به مساحت سطحی که به سمت یک نقطه بسیار کوچـک میل می کنـد , بدست می آید . اگر از طـرف سیـال فشاری به دیـواره ی ظرفی وارد شود , متقابلا از طرف همان ظرف نیز فشار برابر با فـشار سیال به سیال اعمال می شود . مایعات بخوبی در مقابل فشارهای زیاد از خود مقاومت نشان می دهند در صورتیکه در مقابل کشش بـسیار ضعیف هستند .
فشار را می توان بصورت ارتفاع ستونی از سیال نیز بیان کرد رجوع به فصل 2 . فشار مطلق را با P و فشار نسبی را با نشان خواهیم داد .
اسلاید 19 :
7-1 گاز کامل
رابطه های ترمودینامیکی و جریان سیالات تراکم ناپذیر نظیر گازها به طور کلی به گازهای کامل محدود می شود . گاز کامل , گازی است که از قانون مربوط به گازهای کامل پیروی کند و دمای مخصوص آن نیـز ثابت باشد :(10-1) PVs=RT
در رابطه ی بالا P فشار مطلق، Vs حجم مخصوص ، R ثابت گازها و T دمای مطلق می باشد .باید بین گاز کامل با سیال آرمانی تفاوت قائل شد . زیرا سیال آرمانی سیالی است که تراکم ناپذیر و بدون اصطکاک می باشد در حالیـکه گاز کـامل , گازی است که هم چسبنـدگی دارد و هم قـادر به ایجـاد تنش های برشی می باشد و همچنین تراکم پذیر است .معادله ی (10-1) را می توان به صورت زیر درآورد :(11-1) P= ρRT
اسلاید 20 :
یکای R با توجه به سایر کمیتها به آسانی تعیین می شود . اگر از SI استفاده کنیم آنگاه P بر حسب پاسکال , بر حسب کیلوگرم بر متر مکعب و T بر حسب کـلوین می باشد و در نتیجه داریم : (12-1) يا رابطه بین کلوین و سانتی گراد : T = t + 273 که دمای t بر حسب سانتی گراد میباشد یعنی 0`Cبرابر با 273` کلوین می باشد مقادیر R برا ی گازهای معمولی در جدول 4-1 آمده است .