مقاله در مورد اینورترهای PWM

word قابل ویرایش
33 صفحه
4700 تومان

اینورترهای PWM

اینورترpwm
مقدمه
با توسعه روزافزون شبکه¬های قدرت در دنیا مباحثی از قبیل تبدیل انرژی ، انرژیهای نوین ، کاربردهای مختلف سیستمهای ساخت دست بشر در صنعت و ارتباط این موارد باهم باعث شده تا موضوع مهندسی قدرت به عنوان یکی از شاخه¬های بزرگ و برجسته در میان دریای علوم خود را تجلی کند. امروزه در اکثر جاهایی از دنیا که تمدنی وجود داشته باشد می¬توان نفوذ شبکه¬های قدرت را دید.

در این میان مبحث الکترونیک قدرت یکی از مهمترین شاخه¬های این علم می¬باشد. ادوات الکترونیک قدرت امروزه در انواع مختلف و برای کاربردهای گوناگونی ساخته شده¬اند. از آن جمله می¬توان به رکتیفایر¬ها ،
تنظیم¬کننده¬های AC-AC ، برشگرهای ولتاژ وجریان ، اینورترها ، منابع تغذیه و …. اشاره کرد. از این بین اینورترها به عنوان یکی ازمهمترین و پرکاربردترین این ادوات مورد نظر می¬باشند. کاربردهای گوناگون اینورترها از جمله سیستمهای تبدیل DC به AC در مواردی همچون انرژیهای نوین، درایو ماشینهای الکتریکی،ادوات FACTS و …. مورد بحث روز می¬باشد.

 

مروری بر اینورترها
بسته به نوع کاربرد ، نوع کلید ، نوع شبکه که اینورتر به آن وصل می شود و… اینورترهای مختلفی مورد استفاده قرار می گیرند. در این قسمت به بررسی کوتاهی راجع به این انواع می¬پردازیم.
در حالت کلی از لحاظ نوع تغذیه اینورتر و باری که اینورتر انرا تغذیه می کند ، می توان اینورترها را به دو گروه زیر تفسیم کرد :

• اینورترهای منبع ولتاژ VSI .
• اینورترهای منبع جریان CSI.
اینورترهای منبع جریان بیشتر در کاربردهای درایوهای ماشینهای بزرگ صنعتی کاربرد دارند یا در جاهائی که بحث توان بالا وجود دارد در این اینورترها ورودی DC اینورتر جریان می باشد و خروجی AC سینوسی آن ولتاژ . اما اینورترهای منبع ولتاژی برعکس می باشد یعنی ورودی DC ولتاژ و خروجی AC سینوسی جریان می باشد . در هر دو این اینورترها توان قابلیت انتقال در هر دو سمت را دارا می باشد یعنی در صورتی که ولتاژ و جریان هم علامت باشند سیستم بصورت اینورتر و در صورتی که مختلف العلامت باشند سیستم بصورت رکتیفایر عمل می کند.

 

از لحاظ نوع شبکه متصل به اینورتر می توان آنها را به دو دسته زیر تقسیم کرد :
• اینورترهای حقیقی
• اینورترهای مجازی
اگر شبکه ای که اینورتر به آن وصل می باشد یک شبکه اکتیو باشد مثل کاربردهای تولید انرژی های نوین و HVDC در این صورت اینورتر یک اینورتر مجازی می باشد یعنی اینورتر در حقیقت یک مبدل پل تریستوری با زاویه آتش بزرگتر از ۹۰ درجه خواهد بود . اما در صورتی که این شبکه پسیو باشد اینورتر یک اینورتر حقیقی بوده و عمل تبدیل مستقیم DC به AC را انجام می دهد.

از لحاظ نوع کموتاسیون می¬توان به دو دسته¬بندی زیر رسید :
• اینورترهای با کموتاسیون طبیعی ، کموتاسیون خط.
• اینورترهای با کموتاسیون اجباری
کموتاسیون طبیعی بیشتر در سیستمهای متصل به شبکه استفاده می¬گردد لیکن در کموتاسیون اجباری از طریق مدار جانبی کموتاسیون صورت می¬گیرد.

از لحاظ نوع شبکه نیز می¬توان تقسیم بندی زیر را انجام داد :
• اینورترهای تک فاز.
• اینورترهای سه فاز.

که در واقع به نوع بار و نوع کاربرد بستگی دارند خود اینورترهای تک فاز نیز دارای انواع مختلفی می¬باشند مانند اینورترهای نیم موج ، تمام موج و پوش پول که هر کدام در کاربردهای مخصوصی مورد استفاده دارند .
همچنین از بابت نوع مدار تحریک عناصر کلیدی می توان اینورترها را به انواع زیر تقسیم بندی کرد:
• اینورترهای موج مربعی که در این انواع عمل کنترل ولتاژ از طریق رکتیفایر کنترل می¬گردد تا اینکه دامنه موج AC خروجی را کنترل کند و اینورتر فقط عمل کنترل فرکانس را انجام می دهد . شکل موج خروجی در این حالت مربعی می باشد.

o
 اینورترهای با مدولاسیون پالسی: در این سیستمها رکتیفایر معمولا بصورت دیودی بوده و عمل کنترل ولتاژ و فرکانس فقط توسط اینورتر صورت می¬گیرد . این کار از طریق اعمال الگوهای مختلف پالس به کلیدهای اینورتر صورت می¬گیرد . الگوهای مختلفی برای نزدیک تر کردن سیگنال خروجی به فرم سینوسی وجود دارند از جمله: PWM,SPWM,PAM,SVM,… که هرکدام درکاربردهای بخصوصی استفاده می¬گردند.

از سوی دیگر می توان تقسیم¬بندی را از لحاظ تعداد سطوح سیگنال خروجی انجام داد:
• اینورترهای دو سطحی: در این سیستمها شکل موج خروجی دارای دو سطح خروجی مثبت و منفی می¬باشد.
• اینورترهای سه سطحی: که در این سیسستمها علاوه بر دو سطح قبلی شکل موج سطح صفر نیز مابین آنها اضافه می¬گردد. این کار با انجام عمل حذف ولتاژی در اینورترها صورت می¬گیرد.
• اینورترهای چند سطحی: در این انواع از اینورترهائی با تعداد چند عنصر کلیدی در هر بازوی پل استفاده می¬گردد که با ترکیب مناسب این عناصر باهم می توان به چندین سطح در سیگنال خروجی رسید. این عمل را با اتصال موازی اینورترها نیز می توان انجام داد . فایده این عمل در کاهش ابعاد سیستم فیلترینگ می¬باشد.

اما انواع دیگری از اینورترهای پرکاربرد در صنعت وجود دارند که بیشتر برای کاربردهای فرکانس بالا استفاده می¬گردند و با نام اینورترهای تشدیدی خوانده می شوند.
در این اینورترها کلید زنی عناصر در لحظه صفر شدن ولتاژ یا جریان صورت می-گیرد. لذا کاهش قابل ملاحظه ای در مقدار تلفات سویچینگ بوجود می¬آورد. این اینورترها به دو دسته زیر تقسیم می گردند.:

۱-اینورترهای با تشدید بار : در این نوع مبدلها از یک بار LC برای ایجاد رزونانس استفاده می شود . لیکن بسته به مقادیر مختلف در مقدار ضریب میرایی و فرکانس اینورتر ؛ این سیستمها می¬توانند حالتهای مختلف عملکردی داشته باشند که هریک برای کاربرد خاصی استفاده می¬گردند. خود این اینورترها دو نوع می باشند

• – اینورترهای تشدیدی با مدار تشدید سری: که در این انواع از یک سیستم رزونانسی سری در خروجی اینورتر به همراه بار استفاده می¬گردد و وجود سلف سری باعث پیوستگی در جریان خروجی خواهد شد. لذا این اینورتر بایستی از طریق یک منبع ولتاژ تغذیه گردد یعنی یک اینورتر منبع ولتاژ می باشد
• – اینورترهای تشدیدی با مدار تشدید موازی: که در این انواع از یک سیستم رزونانسی موازی در خروجی اینورتر به همراه بار استفاده می¬گردد و وجود خازن موازی باعث پیوستگی در ولتاژ خروجی خواهد شد. لذا این اینورتر بایستی از طریق یک منبع جریان تغذیه گردد یعنی یک اینورتر منبع جریان می باشد
۲-اینورترهای با لینک DC تشدیدی: د

ر این سیستمها به ولتاژ DC ورودی به اینورتر اجازه داده می¬شود تا حول یک مقدار ثابت نوساناتی را داشته باشد ، معمولا بین صفر و یک مقدار مثبت، در این حالت ولتاژ ورودی طی زمان محدودی صفر می ماند و اجازه سویچینگ در این لحظات به کلیدهای اینورتر داده می¬شود.
چگونگی کارکرد یوپی اس دلتا کانورژن و نحوه عملکرد اجزای داخلی آن :
پیش از آنکه به بیان نقاط تمایز و مزایای طراحی دلتا کانورژن بپردازیم ، چگونگی کارکرد این طراحی و وظایف کانورترها را در حالتهای متفاوت عملکرد مورد بررسی قرار می دهیم .

جهت درک آسانتر وخصوصاً با توجه به وجود ترانسفورمری خاص (دلتا ترانسفور مر) در این طراحی ، ابتدا قوانین رگولاسیون ولتاژ و جریان ترانسفورمر را یادآوری می کنیم:
۱-ولتاژ سیم پیچ ثانویه یک ترانسفورمر تابع ضریب تناسب و ولتاژ سیم پیچ اولیه می باشد.
۲- جریان سیم پیچ ثانویه یک ترانسفورمر تابع عکس ضریب تناسب و جریان سیم پیچ اولیه می باشد.
۳- شکل موج جریان بوسیله مشخصه های جریان بار کنترل می شوند یعنی اگر بار خطی
( برای مثال بارمقاومتی ) در ثانویه داشته باشیم جریان سیم پیچ اولیه سینوسی و در صورت غیر خطی بودن بار ، جریان اولیه نیز غیر خطی خواهد بود.
دلتا ترانسفورمر یک ترانس ایزوله تکفاز است که نسبت تناسب آن در یوپی اس دلتاکانورژن اپیکو ۲:۱ میباشد . دردلتاکانورژن اتصال AC-AC کانورترها از طریق دلتا ترانسفورمر ، بر قرار شده که اصطلاحا به این مسیر Pure power path گفته می شود.

وجود ترانسفورمر ایزوله دیگری نیز در خروجی کانورتر اصلی ، از مزایای منحصر بفردیوپی اس های دلتا کانورژن اپیکو میباشد که در افزایش ضریب اطمینان و حذف مولفه های DC در خروجی سیستم بسیار موثر است . نسبت تناسب این ترانس ۱۰:۱ میباشد.
برای مثال یک سیستم با خروجی ۲٫۲KW /220VAC ویک بار۱۰ آمپری را در نظر می گیریم و در حالتهای متفاوت ، چگونگی کارکرد دلتا کانورژن را مورد بررسی قرار می دهیم .

درشکل زیر(شکل -۱) منبع AC ورودی روشن و هر دو کانورتر خاموش است ، بدیهی است که با خاموش بودن استاتیک سوییچ اصلی و کانورترها انتقال توان به خروجی انجام نمیشود .
شکل -۱

حال در شرایطی که دلتا کانورتر خاموش و منبع توان ورودی و استاتیک سوییچ اصلی و اینورتر اصلی روشن باشند به تحلیل مدار زیر (شکل -۲) می پردازیم :

شکل -۲
همان طور که می بینیم توان خروجی توسط اینورتر اصلی و انرژی ذخیره شده باتری تامین می گردد ، اینورتر اصلی ولتاژ ۲۲۰V تنظیم شده ای ، همفاز با منبع ورودی تولید می کند.
به دلیل خاموش بودن دلتا اینورتر ، جریان ثانویه دلتا ترانسفورمر صفر بوده ، در نتیجه جریان سیم پیچ اولیه نیزصفر خواهد بود وتمامی توان مورد نیاز جهت تغذیه بار از انرژی ذخیره شده باتری و اینورتر اصلی حاصل می گردد ، بنابراین در می یابیم که تنها راه تامین توان جهت تغذیه بار مصرفی از منبع AC ورودی ، روشن بودن دلتا کانورترمی باشد به شکل زیر(شکل -۳) توجه فرمایید.
شکل -۳
بالانس توان در دلتا کانورژن :
قانون اول کیرشهف بیان میکند : مجموع جبری جریانهای هر گره درمدار معادل صفر است، در نقطه توازن توان Power balance point) ( نیز این مطلب صادق است .

 

در شکل ۴ یک سیستم با خروجی ۲٫۲KW / 220VAC نمایش داده شده است به عنوان مثال جهت تغذیه یک بار ۱۰A و بافرض تلفات ۱۰ درصدی سیستم ،در حالت عملکرد عادی که منبع توان ورودی دارای ولتاژ۲۲۰v می باشد ، از آنجاییکه اینورتر اصلی نیزجهت تثبیت ولتاژ ۲۲۰v ±۱% تنظیم شده است ، ولتاژ دو سر سیم پیچ اولیه دلتا ترانسفورمرکه تفاضل ولتاژ ورودی و خروجی است ، صفر بوده و وضعیتی بی نظیرو کمترین تلفات را خواهیم داشت . دلتا کانورتر باید جریان ۲۲A (در

ثانویه دلتا ترانسفورمر) راتامین نماید در نتیجه با توجه به ضریب تناسب دلتا ترانسفورمر در سیم پیچ اولیه ۱۱A القا میگرددکه ۲۲۰۰W)10A) جهت بار مصرفی و (۲۲۰*۱A=220W)1A باقیمانده به سمت اینورتر اصلی جهت تلفات داخلی سیستم و شارژ باتریها بر می گردد، بدین ترتیب امکان عملکرد دوسویه در مسیرمیان اینورترها نیز فراهم می گردد . لازم به ذکر است که در این شرایط، هنگام عملکرد دوسویه ، از انرژی ذخیره شده باتری استفاده نمی شود .

شکل- ۴
بالانس توان رادر حالت افت ولتاژ ورودی مورد بررسی قرار می دهیم :
در شرایطی که ولتاژ ورودی ۳۵% کاهش یابد، دلتا کانورتر باید جریان ورودی را به ۱۶٫۹۲۳۰۷۷A (2420/143=16.923077) افزایش دهد ، در نهایت ۲۲۰۰W (10A) جهت تغذیه بار مصرفی و جریان باقیمانده (۶٫۹۲۳A)به منظور تلفات داخلی(۱A) و کنترل توان جاری شده میان اینورترها(۵٫۹۲۳۰A) بکارگرفته می شود .
برای درک آسانتر به مدار شکل ۵ توجه فرمایید :
شکل – ۵
در این حالت جهت بالانس توان در خروجی ، تبدیل توان در دلتا ترانسفورمر از ثانویه به اولیه صورت می گیرد و توان کنترل شده در حلقه ای متشکل از دلتا ترانسفورمر ،Pure power path ، ترانسفورمر ایزوله خروجی ، مسیر DC و اینورترها جاری می شود .
شکل -۶
بالانس توان را در شرایط افزایش ولتاژ ورودی مورد بررسی قرار می دهیم :
در صورتی که ولتاژ ورودی ۱۵% افزایش یابد، دلتا اینورتر باید به منظور نگهداری بالانس توان ، جریان ورودی را کاهش داده وهمانطور که درمدارات زیر(اشکال ۷و۸ ) نمایش داده شده است توان خروجی از دومسیر موازی به صورت زیر تامین می گردد .

شکل-۷
شکل -۸
بنابراین زمانیکه ولتاژ ورودی در مقدار نامی خود باشد ، توان دلتا ترانسفورمر صفر خواهد بود و در صورت پایین بودن ولتاژ ورودی جهت بالانس توان در خروجی ، توان از ثانویه به اولیه دلتا ترانسفورمر جاری می شود و در حالت عکس (افزایش ولتاژ ورودی ) توان از اولیه به ثانویه دلتا ترانسفورمر جریان می یابد و در نهایت بار مصرفی ۱۰۰% توان مورد نیاز خود را در نقطه بالانس توان (power balance point) دریافت میکند . در حقیقت دلتا کانورتر وظیفه نگهداری بالانس توان در خروجی را به عهده دارد .

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
wordقابل ویرایش - قیمت 4700 تومان در 33 صفحه
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد