بخشی از مقاله


ماشین های الکتریکی

تاريخچه پيدايش ماشين هاي الكتريكي
ماشين هاي الكتريكي با جريان دائم نخستين ماشين هايي است كه پس از پيل ولتا استفاده علمي از برق را توسعه داد .كشف اين ماشين ها نتيجه كار و كوشش اشخاصي مانند پيكسي ،پاچي نتي ، زيمنس و بويژه گرام بوده است .


گرام ماشين القايي ابداع كرد كه براي نخستين بار در صنعت بكار افتاد . اين ماشين بطور متقابل كار مي كرد و به اراده انسان محرك يا مولد نيرو مي گرديد . همين ماشين را اديسن و تامسن و دپره تكميل كردند و هنوز هم مورد استفاده و عمل مي باشد .
هر چند پاچي نتي در كار پيشقدم بود اما گرام با شكلي كه كلكتور ابتكاري خود داد اصلاح و بهبود علمي بسيار مهمي را پديد آورده است . گرام كاشف اصل تازه اي نبود بلكه بوجه الهام در ضمن كار و بي توجه به روشهاي علمي تحقيق و تدقيق و توفيق يافت نخستين موتور قابل استفاده واقعي را بسازد ؛ از اين رو گرام را بايد از جمله مخترعان زبر دست و زرنگ و خوش بخت بشمار آورد .
گرام همراه با هيپوليت فنتن « شركت ماشين هاي مانيتو الكتريك گرام » را بوجود آورد و موفق گرديد اختراع خود را يك راست وارد بازار و عمل كند
ساختار ماشينهاي الكتريكي:

ماشينهاي الكتريكي از دو بخش اساسي تشكيل شده اند:
الف)قسمت متحرك ودوار به نام رتور


ب) قسمت ساكن به نام استاتور
بين اين دو قسمت ،شكاف هوايي وجود دارد .
استاتو و رتور از مواد فرومغناطيسي ساخته مي‌شوند تا چگالي شار بيشتر گردد و در نتيجه اندازه و حجم ماشين كمتر شود.
نكته: اگر شار در رتور و استاتور متغير با زمان باشد ،هسته اهني لايه‌به‌لايه ساخته م

ي‌شود تا جريان گردابي كاهش يابد.
در بسياري از ماشينها محيط داخلي استاتور و محيط بيروني رتور حاوي شيارهاي متعددي است كه داخل آنها هادي‌ها جاسازي ميشوند، اين هاديها بهم وصل مي شوند و سيم پيچي حاصل مي شود.به سيم پيچي هايي كه در آنها ولتاژ القا مي شود ،سيم پيچي آرميچر اطلاق مي گردد. به سيم پيچ هايسي كه ار آنها جريان ميگذرد تا ميدان مغناطيسي و شار اصلي را پديد آورند، سيم پيچ تحريك يا سيم پيچ ميدان گفته مي شود.
سيم پيچ آرميچر تامين كننده تمام قدرتي است كه تبديل شده و يا انتقال مي يابد. قدرت نامي سيم پيچ آرميچر،‌هم در ماشين هاي DC و هم در ماشين هاي AC فقط با جريان متناوب كارمي كند.
انواع ماشين‌هاي الكتريكي:
1- ماشين جريان مستقیم
2- ماشين القايي
3- ماشين سنكرون
ماشين جريان مستقيم :(DC)
در ماشينهاي DCسيم پيچ تحريك بر روي استاتور قرار دارد و رتور حاوي سيم پيچ آرميچير است. از سيم پيچي تحريك جريان DC مي گذرد تا شار درون ماشين شكل گيرد.
ولتاژ القا شده در سيم پيچي آرميچر يك ولتلژ متناوب است براي يكسو كردن ولتاژ متناوب در پايانه رتور از كموتاتور و جاروبك استفاده مي شود. استاتور مي تواند بگونه اي باشد كه سيم پيچ تحريك بيش از دو قطب ايجاد نمايد.
نكته: مي توان يك ماشين DC را معادل يك ماشين AC دانست كه يكسو كننده مكانيكي به آن اضافه شده است.سيم پسچ تحريك فقط يك ميدان مغناطيسي براي ما ايجاد ميكند.
آشنايي با ماشينهاي الكتريكي DC :
ماشين DC داراي قابليت انعطاف زيادي است و ميتوان با اتصالات مختلف مدتر تحريك آن به مشخصه هاي گوناگون گشتاور و سرعت و ولتاژ جريان دست يافت.
از ماشينهاي dc مي توانيم به صورت موتور يا ژنراتور بهره برداري كرد. اما امروزه براي ايجاد برق dc از سيستمهاي يكسو ساز الكترونيك قدرت استفاده مي شود لذا ژنراتورهاي dc رفته رفته جاي خود را در صنعت از دست مي دهند. در حاليكه موتورهاي dc به خاطر امكان كنترل سرعت خوب كاربرد فراواني دارند
امروزه همچنان موتورهاي dc بزرگ در صنايع نورد، نساجي،چاپ، جرثقيل سازي كاربرد فراوان دارند موتورهاي dc كوچك هم در سيستمهاي كنترل به وفور يافت مي شوند. كه مي توان از تاكومتر(سرعت سنج) نام برد.


موتورهاي DC : يکي از اولين موتورهاي دوار، اگر نگوييم اولين، توسط ميشل فارادي در سال 1821م ساخته شده بود و شامل يک سيم آويخته شده آزاد که در يک ظرف جيوه غوطه ور بود، مي شد. يک آهنرباي دائم در وسط ظرف قرار داده شده بود. وقتي که جرياني از سيم عبور مي کرد، سيم حول آهنربا به گردش در مي آمد و نشان مي داد که جريان منجر به افزايش يک ميدان مغناطيسي دايرهاي اطراف سيم مي شود. اين موتور اغلب در کلاس هاي فيزيک مدارس نشان داده مي شود، اما گاهاً بجاي ماده سمي جيوه، از آب نمک استفاده مي شود.
موتور کلاسيک DC داراي آرميچري از آهنرباي الکتريکي است. يک سوييچ گردشي به نام کموتاتور جهت جريان الکتريکي را در هر سيکل دو بار برعکس مي کند تا در آرميچر جريان يابد و آهنرباهاي الکتريکي، آهنرباي دائمي را در بيرون موتور جذب و دفع کنند.
سرعت موتور DC به مجموعه اي از ولتاژ و جريان عبوري از سيم پيچهاي موتور و بار موتور يا گشتاور ترمزي، بستگي دارد. سرعت موتور DC وابسته به ولتاژ و گشتاور آن وابسته به جريان است. معمولاً سرعت توسط ولتاژ متغير يا عبور جريان و با استفاده از تپ ها (نوعي کليد تغيير دهنده وضعيت سيم پيچ) در سيم پيچي موتور يا با داشتن يک منبع ولتاژ متغير، کنترل مي شود. بدليل اينکه اين نوع از موتور مي تواند در سرعتهاي پايين گشتاوري زياد ايجاد کند، معمولاً از آن در کاربردهاي ترکشن (کششي) نظير لکوموتيوها استفاده مي کنند.
اما به هرحال در طراحي کلاسيک محدوديتهاي متعددي وجود دارد که بسياري از اين محدوديت ها ناشي از نياز به جاروبک هايي براي اتصال به کموتاتور است. سايش جاروبک ها و کموتاتور، ايجاد اصطکاک مي کند و هرچه که سرعت موتور بالاتر باشد، جاروبک ها مي بايست محکم تر فشار داده شوند تا اتصال خوبي را برقرار کنند. نه تنها اين اصطکاک منجر به سر و صداي موتور مي شود بلکه اين امر يک محدوديت بالاتري را روي سرعت ايجاد مي کند و به اين معني است که جاروبک ها نهايتاً از بين رفته نياز به تعويض پيدا مي کنند. اتصال ناقص الکتريکي نيز توليد نويز الکتريکي در مدار متصل مي کند. اين مشکلات با جابجا کردن درون موتور با بيرون آن از بين مي روند، با قرار دادن آهنرباهاي دائم در داخل و سيم پيچ ها در بيرون به يک طراحي بدون جاروبک مي رس

يم.
موتورهاي ميدان سيم پيچي شده
آهنرباهاي دائم در (استاتور) بيروني يک موتور DC را ميتوان با آهنرباهاي الکتريکي تعويض کرد. با تغيير جريان ميدان (سيم پيچي روي آهنرباي الکتريکي) مي توانيم نسبت سرعت/گشتاور موتور را تغيير دهيم. اگر سيم پيچي ميدان به صورت سري با سيم پيچي آرميچر قرار داده شود، يک موتور گشتاور بالاي کم سرعت و اگر به صورت موازي قرار داده شود، يک موتور سرعت بالا با گشتاور کم خواهيم داشت. مي توانيم براي بدست آوردن حتي سرعت بيشتر اما با گشتاور به همان ميزان کمتر، جريان ميدان را کمتر هم کنيم. اين تکنيک براي ترکشن الکتريکي و بسياري از کاربردهاي مشابه آن ايده آل است و کاربرد اين تکنيک مي تواند منجر به حذف تجهيزات يک جعبه دنده متغير مکانيکي شود.

موتورهاي يونيورسال
يکي از انواع موتورهاي DC ميدان سيم پيچي شده موتور ينيورسال است. اسم اين موتورها از اين واقعيت گرفته شده است که اين موتورها را مي توان هم با جريان DC و هم AC بکار برد، اگر چه که اغلب عملاً اين موتورها با تغذيه AC کار مي کنند. اصول کار اين موتورها بر اين اساس است که وقتي يک موتور DC ميدان سيم پيچي شده به جريان متناوب وصل مي شود، جريان هم در سيم پيچي ميدان و هم در سيم پيچي آرميچر (و در ميدانهاي مغناطيسي منتجه) همزمان تغيير مي کند و بنابراين نيروي مکانيکي ايجاد شده همواره بدون تغيير خواهد بود. در عمل موتور بايستي به صورت خاصي طراحي شود تا با جريان AC سازگاري داشته باشد (امپدانس/رلوکتانس بايستي مدنظر قرار گيرند)، و موتور نهايي عموماً داراي کارايي کمتري نسبت به يک موتور معادل DC خالص خواهد بود. مزيت اين موتورها اين است که ميتوان تغذيه ي AC را روي موتورهايي که داراي مشخصه هاي نوعي موتورهاي DC هستند بکار برد، خصوصاً اينکه اين موتورها داراي گشتاور راه اندازي بسيار بالا و طراحي بسيار جمع و جور در سرعتهاي بالا هستند. جنبه منفي اين موتورها تعمير و نگهداري و مشکل قابليت اطمينان آنهاست که به علت وجود کموتاتور ايجاد مي شود و در نتيجه اين موتورها به ندرت در صنايع مشاهده مي شوند اما عمومي ترين موتورهاي AC در دستگاه هايي نظير مخلوط کن و ابزارهاي برقي اي که گاهاً استفاده مي شوند، هستند.

انواع ماشينهاي جريان مستقيم:
1- ژنراتورهاي ( مولد ) DC
2- موتورهاي DC
انواع ژنراتورهاي DC :
1-مولد DC با تحريك جداگانه :
سيم پيچ ميدان اين ژنراتور به وسيله يك منبع ولتاژ مستقل تحريك ميشود.
اين ژنراتور هنگاميكه يك حوزه وسيعي از تغييرات ولتاژ خروجي مورد نياز باشد استفاده ميشود.
كاربرد : بدليل قابليت تنظيم ولتاژ در محدوده وسيع در تنظيم دور موتورها وتحريك مولدهاي بزرگ در نيروگاهها مورد استفاده قرار ميگيرد.
2-مولد شنت :
سيم پيچ ميدان با سيم پيچ آرميچر موازي بسته ميشودو به همين دليل به آن سيم پيچ شنت يا موازي ميگويند. تعداد حلقه هاي سيم پيچ شنت بسيار زياد است و جريان اين سيم پيچ كم

حدود 5 درصد جريان اسمي آرميچر ميباشد. ( جريان بايد كم باشد تا در جريان اصلي اثر كمي بگذارد.)
كاربرد: از اين مولد در شارژ باطري ها و تامين برق روشنايي اضطراري و تغذيه سيم پيچ مولد هاي نيروگاهي استفاده مي شود.
۳- مولد سري: كه سيم پيچ ميدان (سيم پيچ سري تحريك) با سيم پيچ آرميچر سري بسته مي شود. سيم پيچ سري داراي تعداد حلقه هاي كمتر بوده ولي جريان عبوري آن نسبتاُ زياد است.(زيرا جريان آن همان جريان اصلي است) تا معادل mmf سيم پيچ شنت توليد شود.
كاربرد مولد سري :
بدليل داشتن گشتاور راه اندازي زياد در وسايل حمل و نقل مانند مترو و جرثتقيلهاي برقي استفاده ميشود.
4-مولد كمپوند :
اگر از هر دو سيم پيچ شنت وسري جهت تحديك مولد استفاده شود، مولد DC يا كمپوند ميگويند ، كه داراي دو نوع كمپوند اضافي و نقصاني ميباشند.
كمپوند اضافي :
اگر نيرو محركه مغناطيسي سيم پيچ سري ، نيرو محركه مغناطيسي سيم پيچ شنت را تحريك كند، مولد كمپوند اضافي گويند. كه داراي دو نوع شنت بلند و شنت كوتاه ميباشد
مولد كمپوند اضافي بسته به تعداد دورهاي سيم پيچ سري ميتواند يكي از سه حالت زير باشد :
الف) فوق كمپوند : (تعداد دهر سيم پيچ سري زياد است) در مواردي استفاده ميشود كه بايستي ولتاژ بار ثابت باشد. ولي به علت وجود فاصله بين مولد و مصرف كننده در سيمها افت ولتاژ به وجود مي آيد. در اين حالت افزايش ولتاژ خروجي مولد، افت ولتاژ خط را جبران ميكند و به مصرف كننده ولتاژ ثابت ميرسد.
ب)تخت : نيروي محركه مغناطيسي سيم پيچ سري و موازي با هم برابر بوده و جايي استفاده ميشود كه نياز به ولتاژ ثابتي باشدو فاصله بين مولد و مصرف كننده كم باشد
ج)زير كمپوند : اثر آمپر دور سيم پيچ سري ناچيز مي باشد(ـبه علت تعداد دور كم سيم پيچ سري) و در تحريك مولد هاي نيروگاهي نقش موثري دراد
كمپوند نقصاني :
كمپوند نقصاني هنگامي كه شار سيم پيچ سري باعث كاهش و نقصان اثر شار سيم پيچ شنت شود و در جوشكاري قوس الكتريكي استفاده مي شود.


تذكر : كمپوند نقصاني و كمپوند اضافي داراي دو نوع شنت بلن و شنت كوتاه مي باشند
كه اگر سيم پيچ سري با سيم پيچ ارميچر با هم سري بسته شوند شنت بلند گفته و اگر سيم پيچ شنت با سيم پيچ ارميچر موازي قرار گيرد شنت كوتاه مي گويند
مبانی ماشینهای الکتریکی جریان مستقیم
طبقه بندی ماشینهای الکتریکی
ماشینهای الکتریکی به دو طریق دسته بندی می شوند:
1- از نظر نوع جریان الکتریکی
الف- ماشینهای الکتریکی جریان مستقیم
ب- ماشینهای الکتریکی جریان متناوب
2- از نظر نوع تبدیل انرژی
الف- مولدهای الکتریکی که انرژی مکانیکی را به انرژی الکتریکی تبدیل می کنند
ب- موتورهای الکتریکی که انرژی الکتریکی را به انرژی مکانیکی تبدیل می کنند
به طور کلی ماشینهای الکتریکی جزء وسایل تبدیل انرژی غیر خطی هستند یعنی هر تغییر در ورودی همیشه به یک نسبت در خروجی ظاهر نمی شود.
ساده جریان مستقیم
یک مولد ساده جریان مستقیم از چهار قسمت اصلی زیر تشکیل شده است
1- قطبهای مغناطیسی: که وظیفه ایجاد میدان مغناطیسی مولد را بعهده دارد و می تواند بصورت آهنربای دائم و یا آهنربای الکتریکی باشد
2- هادیها: برای ایجاد ولتاژ القایی به کار گرفته میشود
3- کموتاتور: در ساده ترین حالت از دو نیم استوانه مسی که توسط میکا نسبت به یکدیگر عایق شده اند تشکیل می گردد، وظیفه یک طرفه کردن ولتاژ و جریان القایی را در خارج از مولد بعهده دارد.
4- جاروبک: جهت انتقال جریان الکتریکی از هادیها به مصرف کننده استفاده میشود شکل زیر مولد ساده جریان مستقیم را نشان میدهد.
طرز کار مولد ساده جریان مستقیم: با حرکت هادیها در فضای ما بین قطبها باعث میشود میدان مغناطیسی توسط هادیها قطع میشود بدین ترتیب مطابق پدیده القاء در هادیها ولتاژ القاء میشود.ابتدا و انتهای هر کلاف به یک نیم استوانه مسی یا یک تیغه کوموتاتور وصل میشود روی تیغه های کوموتاتور دو عدد جاروبک بطور ثابت قرار داشته و با حرکت هادیها تیغه های کموتاتور زیر جاروبک می لغزند، بدین ترتیب در ژنراتورهای جریان مستقیم از طریق کوموتاتور ولتاژ القاء شده طوری به جاروبکها منتقل می شود که همیشه یکی از جاروبکها دارای پلاریته مثبت و دیگری دارای پلاریته منفی است. شکل موج ولتاژ القاء شده در این مولد ساده بصورت زیر می باشد.
برای افزایش سطح ولتاژ القاء شده و بهبود یکسوسازی بمنظور داشتن ولتاژ با دامنه ثابت باید تعداد کلافها را افزایش داد و کلافها را به کمک تیغه های کوموتاتور سری کنیم.
چگونگی تغییر پلاریته ولتاژ القایی در مولد ساده
در مولد جریان مستقیم تغییر پلاریته ولتاژ خروجی عملاٌ در صورت ایجاد یکی از دو حال

ت زیر ممکن می شود:
1- جهت چرخش آرمیچر عوض شود
2- جهت جریان در سیم پیچ قطبها تغییر کند در صورتیکه قطبها از نوع مغناطیس دائم نباشد
چگونگی تغییر دامنه ولتاژ القایی در مولد ساده
برای افزایش دامنه ولتاژ القا شده دو روش ممکن است:
1- افزایش سرعت چرخش آرمیچر که باعث افزایش ولتاژ بصورت خطی می شود
2- افزایش جریان تحریک که باعث افزایش ولتاژ مولد بصورت غیر خطی می شود
موتور ساده جریان مستقیم
موتور ساده از نظر ساختمانی مانند مولد ساده جریان مستقیم می باشد فقط نحوه کار آن با مولد ساده جریان مستقیم تفاوت دارد. در موتور ساده هادیها از طریق کوموتاتور و جاروبکها به یک منبع جریان مستقیم متصل می شود در اینصورت جریانی از هادیها عبور کرده و در نتیجه مطابق نیروی لورنس به هادیها نیروی وارد میشود و آنها به حرکت در می آید.
نحوه ایجاد نیرو و گشتاور در موتور ساده: در صورتیکه از یک کلاف تک حلقه که بین قطبهای یک مغناطیس قرار دارد جریان الکتریکی عبور کند مطابق شکل به بازوی سمت راست نیروی به سمت بالا و به بازوی سمت چپ نیروی بسمت پایین وارد می شود با وارد شدن دو نیروی مختلف الجهت به دو طرف کلاف طبیعی است که کلاف حول محورش شروع به دوران خواهد نمود یعنی وارد آمدن زوج نیرو موجب ایجاد گشتاور لازم شده است.
در این موتور ساده اگر صفحه کلاف عمود بر خطوط میدان مغناطیسی قرار گیرد به آن گشتاوری وارد نمیشود در ضمن که گشتاور وارد شده نیز دامنه یکنواخت ندارد برای رفع شدن این معایب می بایست تعداد کلافها و تیغه های کوموتاتور را افزایش داد کلافها در زاویه های مختلف قرار می گیرد و با هم توسط تیغه های کوموتاتور سری می شود.
تغییر جهت گردش در موتور ساده DC: تغییر جهت گردش موتور ساده به دو روش زیر ممکن است:
1- تغییر جهت جریان در کلاف که با تغییر پلاریته ولتاژ منبع از خارج موتور میسر است
2- تغییر قطبهای مغناطیسی که با تغییر جهت جریان در سیم پیچی تحریک ممکن است
ساختمان ماشینهای جریان مستقیم
اجزاء تشکیل دهنده ماشینهای جریان مستقیم را میتوان به صورت زیر دسته بندی کرد:
1- قسمت ساکن شامل قطبها و بدنه
2- قسمت گردان (آرمیچر)
3- مجموعه جاروبک و جاروبک نگهدارها
هر کدام از قسمتهای فوق بطور خلاصه توضیح داده می شود
1- اجزاء ساکن ماشینهای جریان مستقیم: قسمتهای ساکن جریان مستقیم شامل اجزاء زیر هستند:
الف- قطبهای اصلی
ب- قطبهای کمکی
ج- بدنه
- قطبهای اصلی: وظیفه این قسمت تامین میدان مغناطیسی مورد نیاز ماشین است. قطبهای اصلی خود شامل قسمتهای زیر می باشد:
- هسته قطب: از ورقهای فولاد الکتریکی به ضخامت حدود 5/0 تا 65/0 میلی متر با خاصیت مغناطیسی قابل قبول تشکیل می شود.
- کفشک قطب: شکل قطب به نحوی است که سطح مقطع کوچکتر برای سیم پی

چ اختصاص داده می شود و قسمت بزرگتر که کفشک قطبی نام دارد سبب شکل دادن میدان مغناطیسی و سهولت هدایت فوران مغناطیسی به فاصله هوایی می شود.
- سیم پیچ تحریک: یا سیم پیچ قطب اصلی که دور هسته قطب پیچیده می شود، برای جریانهای کم باید تعداد دور سیم پیچ تحریک زیاد باشد و سطح مقطع آن کم و برا ی جریانهای زیاد تعداد دور کم برای سیم پیچ لازم است و با سطح مقطع زیاد
- قطبهای کمکی: قطبهای کمکی در ماشینهای جریان مستقیم از هسته و سیم پیچ تشکیل می شوند، هسته قطبهای کمکی را معمولاٌ از فولاد یکپارچه می سازند. سیم پیچی قطبهای کمکی نیز با تعداد دور کم و سطح مقطع زیاد پیچیده می شوند.
- بدنه: قطبهای اصلی، کمکی، جاروبک نگهدارها روی بدنه ماشین محکم می شوند و بوسیله ماشین روی پایه اش نصب می گردد. قسمتی از بدنه را هسته آهنی تشکیل می دهد که برای هدایت فوران مغناطیسی قطبهای اصلی و کمکی بکار می رود این قسمت طوق بکار می رود. شکلهای زیر قطب اصلی و کمکی ماشین جریان مستقیم را نشان میدهد.
2- قسمت گردان یا آرمیچر: در ماشینهای جریان مستقیم قسمت گردنده را القاء شوند یا آرمیچر می نامند که از اجزاء زیر تشکیل شده است:
الف- هسته آرمیچر
ب- سیم پیچی آرمیچر
ج- کلکتور یا یکسوکننده مکانیکی
د- محور
ﻫ- پروانه خنک کننده
- سیم پیچی آرمیچر: از کلافهای مشابهی تشکیل می شود که با الگوی مناسب تهیه و در شیارها قرار می گیرد سیم پیچی آرمیچر مبتنی بر اصول فنی بوده و از طراحی ماشینهای جریان مستقیم تبعیت می کند.
- کلکتور: از تیغه های مسی سخت که توسط میکا نسبت به یکدیگر و محور ماشین عایق شده اند تشکیل می شود.
- محور: محور آرمیچر ماشینهای جریان مستقیم باید از فولادی تهیه گردد که خاصیت مغناطیسی آن کم اما استحکام مکانیکی کافی در مقابل تنشهای برشی، کششی، و پیچشی را دارا باشد انتخاب کردن محور ضعیف خطر آفرین بوده و ممکن بوده در مواقع بروز خطا سبب انهدام کلی ماشین گردد.
- پروانه خنک کننده: پروانه خنک کننده سبب تهویه و ازدیاد عمر مفید ماشین میشود شکل زیر آرمیچر ماشین DC با پروانه خنک کننده را نشان میدهد.
3- جاروبک و جاروبک نگهدارها: وظیفه جاروبک نگهدار قرار دادن صحیح جاروبک روی تیغه های کلکتور است جاروبکها قطعاتی از جنس زغال یا گرافیت می باشند که برای گرفتن جریان از کلکتور یا دادن جریان به آن استفاده می شود.
سیم پیچی آرمیچر ماشینهای جریان مستقیم


همانطور که قبلا اشاره شد سیم پیچی آرمیچر مبتنی بر اصول فنی خاص می باشد که در طراحی آن به نکات مهمی از قبیل استحکام مکانیکی، الکتریکی و حرارتی با عمر مفید و عادی حدود 20 سال حداکثر گشتاور و جریان و ولتاژ با حداقل نوسانة جرقه کم بین زغال و کلکتور و صرفه جویی در مواد اولیه باید توجه کرد.
بسته به نیاز کلافها می توانند بطور سری یا موازی یا ترکیبی از این دو به همدیگر وصل می شوند.
در صورتیکه کلافها با هم سری شوند نیرومحرکه کلافها با هم جمع می شوند و ولتاژ دهی آرمیچر افزایش می یابد. (سیم پیچی موجی)
در صورتیکه کلافها موازی شوند تعداد مسیرهای جریان موجود در آرمیچر افزایش یافته و قابلیت ولتاژ دهی آرمیچر افزایش می یابد. (سیم پیچی حلقوی)
توضیح کامل روشهای سیم پیچی آرمیچر در کتابهای سیم پیچی DC مطرح شده است و ما در این جزوه به مصرفی آن کفایت می کنیم.
الف- سیم پیچی حلقوب شامل حلقوی ساده و حلقوی مرکب
ب- سیم پیچی موجی شامل موجی ساده و موجی مرکب
ج- سیم پیچی پای قورباغه ای
لازم است در اینجا تعداد مسیرهای جریان که در هر نوع ایجاد می شود نیز معرفی شود. تعداد مسیرهای جریان را با 2a نشان میدهند که بشرح زیر است:


2a = 2P حلقوی ساده
2a = 2P.m حلقوی مرکب
2a = 2 موجی ساده
2a = 2m موجی مرکب
2P : تعداد قطبهای آرمیچر ، m : درجه مرکب بودن آرمیچر
عکس العمل مغناطیسی آرمیچر:
چنانچه ماشینهای جریان مستقیم زیر بار قرار گیرند یعنی از سیم پیچی آرمیچر جریان عبور کند یک میدان عکس العمل (عرضی) توسط آرمیچر ایجاد می گردد. این میدان باعث می شود منطقه خنثی در مولدها در جهت چرخش و در موتورها در خلاف جهت چرخش تغییر مکان دهد. عکس العمل آرمیچر علاوه بر انحراف محور خنثی سبب تضعیف میدان مغناطیسی اصلی می شود در نتیجه نیرو محرکه القاء شده در سیم پیچ کم شده، تلفات انرژی در ماشین و جرقه در زیر جاروبکها بوجود می آید برای از بین بردن و یا کم کردن اثر عکس العمل در ماشینهای جریان مستقیم می توان از قطبهای کمکی و یا در ماشینهای بزرگتر از سیم پیچی جبرانگر هم استفاده کرد.
پدیده کموتاسیون:
تغییر تماس جاروبک از یک تیغه کموتاتور به تیغه دیگر کموتاسیون نام دارد در این جابجایی کلافی که تحت کموتاسیون قرار می گیرد چون توسط جاروبک اتصال شده باید در صفحه خنثی قرار گیرددر عین حال چون جریان در این کلاف در زمان کموتاسیون تغییر مقدار و جهت میدهد سبب بوجود آمدن ولتاژ خود القایی در این کلاف شده و از آنجا که این کلاف توسط جاربک و تیغه

های کموتاتور اتصال کوتاه شده است جرقه نسبتاٌ شدید بین زغالها و کموتاتور بوجود می آید. قطبهای کمکی برای رفع این عیب موثر خواهد بود. اما در ماشینهای که قطب کمکی ندارند بهبود عمل کموتاسیون با تغییر محل جاروبکها (در جهت گردش در مولدها و در خلاف جهت گردش در موتورها) انجام گیرد. این جابجایی درست کاملا امکان پذیر و قابل مشاهده می باشد.
رابطه نیرومحرکه القای در ماشینهای DC واقعی
ولتاژ القاء شده در هر ماشین به سه عامل بستگی دارد:
1- فوران مغناطیسی (Ф)
2- سرعت زاویه ای رتور ماشین (ω)
3- ضریب ثابت که به ساختمان ماشین بستگی دارد (K)
این ولتاژ از رابطه رو به رو بدست می آید.
مقدار K و ω را میتوان از رابطه های زیر بدست آورد
P : تعداد جفت قطبهای ماشین
a : تعداد جفت مسیرهای جریان
Z : تعداد هادی های آرمیچر
n : سرعت آرمیچر برحسب دور بر دقیقه
رابطه گشتاور تولید شده در آرمیچر ماشینهای جریان مستقیم واقعی
گشتاور تولید شده در ماشینهای جریان مستقیم نیز به سه عامل بستگی دارد
1- فوران مغناطیسی (Ф)
2- جریان آرمیچر (IA)
3- یک ضریب ثابت (K)
این گشتاور از رابطه رو به رو بدست می آید.
توان و راندمان در ماشینهای DC
در صورتیکه توان ورودی یک ماشین P1 و توان خروجی آن را P2 بنامیم تفاوت این دو تلفات ماشین نام دارد.
ضریب بهره (راندمان): نسبت توان خروجی به توان ورودی ماشین را ضریب بهره می گویند.
تلفات در ماشینهای DC: تلفات در ماشینهای جریان مستقیم بصورت زیر تقسیم بندی می شوند.
1- تلفات مکانیکی یا اصطکاکی (Pmec)
2- تلفات آهنی یا تلفات هسته (PFe)
3- تلفات مسی (Pcu)
- تلفات مکانیکی بعلت اصطکاک محور ماشین در یاتاقانها و اصطکاک جاروبکها با کلکتور و مقاومت هوا بوجود می آید.
- تلفات هسته از تلفات هیسترزیس و تلفات ناشی از جریانهای گردابی در هسته آرمیچر تشکیل می شود.
- تلفات مسی یا ژولی در اثر عبور جریان از سیم پیچ های تحریک و آرمی

چر بوجود می آید
ژنراتورها وموتورهاي الكتريكي
مقدمه: ژنراتورها و موتورهاي الكتريكي گروه از وسايل استفاده شده جهت تبديل انرژي مكانيكي به انرژي الكتريكي يا برعكس . توسط وسايل الكترومغناطيس هستند . يك ماشيني كه انرژي الكتريكي به مكانيكي تبديل مي كند موتورنام دارد.و ماشيني كه انرژي مكانيكي را به انرژي الكتريكي تبديل مي كند ژنراتور يا آلترناتور يامتناوب كننده يا دينام ناميده مي شود.
دو اصل فيزيكي مرتبط با عملكردموتورهاوژنراتور ها وجود دارد. اولين اصل فيزيكي اصل القايي الكترومغناطيسي كشف شده توسط مايكل فارادي دانشمند بريتانيايي است. اگر يك هادي در ميان يك ميدان مغناطيسي حركت كند يا اگر طول يك حلقه ي القايي ساكني جهت تغيير استفاده شود. يك جريان ايجاد مي شود يا القا مي شود در كنتاكنتور بحث اين اصل اين است كه در مورد واكنش الكترومغناطيسي بحث مي كند و اين كه اين واكنش در ابتدا توسط آندر مري آمپر در سال 1820 كه دانشمند فرانسوي است كشف شد.اگر يك جريان از ميان يك كنتاكتور كه در ميدان مغناطيسي قرار گرفتند عبور كند . ميدان نيروي مكانيكي بر آن وارد مي كند .
ساده ترين ماشيني هاي ديناموالكتريك ديسك ديناميكي است كه توسعه يافته توسط افرادي است كه آن شامل يك صفحه ي مسي پيچيده شده است. كه اين پيچش از مركز تالبه وجود دارد .و بين قطبهاي يك آهنرباي سمبر اسبي است .
وقتي ديسك مي چرخد يك جريان بين مركز ديسك ولبه ي آن توسط عملكرد ميدان آهنربا القا مي شود كه ديسك يا صفحه ميتواند ساخته شود. جهت عمل كردن به عنوان يك موتور توسط بكار بردن يك ولتاژ بين لبه ي ديسك و مركزش كه اين به علت چرخش ديسك به دنده بدليل نيروي توليد شده توسط واكنش مغناطيس است . ميدان مغناطيسي آهن رباي دائم به اندازه ي كافي براي كار كردن كافي است . كه حتي به عنوان يك موتور يا دينام كوچك بكار مي رود ( كار مي كند). در نتيجه براي ماشين هاي بزرگتر آهنرباي بزرگتري بكار مي رود. هم موتور ها وهم ژنراتورها داراي دو اصل هستند : قسمتها وميدان كه آهنرباي الكترومغناطيسي با سيم پيچ هايش و آرميچر و ساختاري كه از كنتاكتور حمايت مي كند و كار قطع ميدان مغناطيسي وحمل جريان القا شده ژنراتور يا جريان ناگهاني به موتور را دارد است. آرميچر معموﻸ هسته ي نرم آهني اطراف سيم هاي القايي كه دور سيم پيچ ها پيچيده شده اند است.
موتور هاي AC:
عموماً ما داراي دو نوع از موتورهاي AC هستيم: تک فاز و سه فاز.
موتورهاي AC تک فاز
معمول ترين موتور تک فاز موتور سنکرون قطب چاکدار است، که اغلب در دستگاه هايي بکار مي رود که گشتاور پايين نياز دارند، نظير پنکه هاي برقي، اجاق هاي ماکروويو و ديگر لوازم خانگي کوچک.
نوع ديگر موتور AC تک فاز موتور القايي است، که اغلب در لوازم بزرگ نظير ماشين لباسشويي و خشک کن لباس بکار مي رود. عموماً اين موتورها مي توانند گشتاور راه اندازي بزرگتري را با استفاده از يک سيم پيچ راه انداز به همراه يک خازن راه انداز و يک کليد گريز

از مرکز، ايجاد کنند.
هنگام راه انداز ي، خازن و سيم پيچ راه انداز ي از طريق يک دسته از کنتاکت هاي تحت فشار فنر روي کليد گريز از مرکز دوار، به منبع برق متصل مي شوند . خازن به افزايش گشتاور راه انداز ي موتور کمک مي کند. هنگامي که موتور به سرعت نامي رسيد، کليد گريز از مرکز فعال شده، دسته کنتاکت ها فعال مي شود، خازن و سيم پيچ راه انداز سري شده را از منبع برق جدا مي سازد. در اين هنگام موتور تنها با سيم پيچ اصلي عمل مي کند.
موتورهاي AC سه فاز
براي کاربردهاي نيازمند به توان بالاتر، از موتورهاي القايي سه فاز AC (يا چند فاز) استفاده مي شود. اين موتورها از اختلاف فاز موجود بين فازهاي تغذيه چند فاز الکتريکي براي ايجاد يک ميدان الکترومغناطيسي دوار درونشان، استفاده مي کنند. اغلب، روتور شامل تعدادي هادي هاي مسي است که در فولاد قرار داده شده اند. از طريق القاي الکترومغناطيسي ميدان مغناطيسي دوار در اين هادي ها القاي جريان مي کند، که در نتيجه منجر به ايجاد يک ميدان مغناطيسي متعادل کننده شده و موجب مي شود که موتور در جهت گردش ميدان به حرکت در آيد. اين نوع از موتور با نام موتور القايي معروف است. براي اينکه اين موتور به حرکت درآيد بايستي همواره موتور با سرعتي کمتر از فرکانس منبع تغذيه اعمالي به موتور، بچرخد چرا که در غير اين صورت ميدان متعادل کنندهاي در روتور ايجاد نخواهد شد. استفاده از اين نوع موتور در کاربردهاي ترکشن نظير

لوکوموتيوها، که در آن به موتور ترکشن آسنکرون معروف است، روز به روز در حال افزايش است. به سيم پيچ هاي روتور جريان ميدان جدايي اعمال مي شود تا يک ميدان مغناطيسي پيوسته ايجاد شود، که در موتور سنکرون وجود دارد، موتور به صورت همزمان با ميدان مغناطيسي دوار ناشي از برق AC سه فاز، به گردش در مي آيد. موتورهاي سنکرون را مي توانيم به عنوان مولد جريان هم بکار برد.
سرعت موتور AC در ابتدا به فرکانس تغذيه بستگي دارد و مقدار لغزش، يا اختلاف در سرعت چرخش بين روتور و ميدان استاتور، گشتاور توليدي موتور را تعيين مي کند.

تغيير سرعت در اين نوع از موتورها را ميتوان با داشتن دسته سيم پيچ ها يا قطب هايي در موت

ور که با روشن و خاموش کردنشان سرعت ميدان دوار مغناطيسي تغيير مي کند، ممکن ساخت. به هر حال با پيشرفت الکترونيک قدرت مي توانيم با تغيير دادن فرکانس منبع تغذيه، کنترل يکنواخت تري بر روي سرعت موتورها داشته باشيم.
موتورهاي پله اي : نوع ديگري از موتورهاي الکتريکي موتور پله اي است، که در آن يک روتور درون و خاموش مي شوند ، کنترل مي شود. يک موتور پله اي ترکيبي از يک موتور الکتريکي DC و يک سلونوييد است. موتورهاي پله اي ساده توسط بخشي از يک سيستم دنده اي در حالت هاي موقعيتي معيني قرار مي گيرند، اما موتورهاي پله اي نسبتا کنترل شده، مي توانند بسيار آرام بچرخند. موتورهاي پله اي کنترل شده با کامپيوتر يکي از فرمهاي سيستم هاي تنظيم موقعي

ت است، بويژه وقتي که بخشي از يک سيستم ديجيتال داراي کنترل فرمان يار باشند.
موتورهاي خطي
يک موتور خطي اساساً يک موتور الکتريکي است که از حالت دوار در آمده تا بجاي اينکه يک گشتاور (چرخش) گردشي توليد کند، يک نيروي خطي توسط ايجاد يک ميدان الکترومغناطيسي سيار در طولش، بوجود آورد. موتورهاي خطي اغلب موتورهاي القايي يا پله اي اند. مي توانيد يک موتور خطي را در يک قطار سريع السير ماگليو مشاهده کنيد که در آن قطار روي زمين پرواز مي کند.
يك موتور خطي در واقع يك موتور الكتريكي است كه استاتورش غير استوانه شده است تا به جاي اينكه يك گشتاور چرخشي توليد كند، يك نيروي خطي در راستاي طول استاتور ايجاد كند.
طرح‌هاي بسياري براي موتورهاي خطي ارائه شده است كه مي‌توان آنها را به دو دسته تقسيم كرد: موتورهاي خطي شتاب بالا و شتاب پايين. موتورهاي شتاب پايين براي قطارهاي مگليو و ديگر كاربردهاي حمل و نقلي روي زمين مناسب هستند. موتورهاي شتاب بالا معمولاً خيلي كوتاه هستند و براي شتاب دادن به جسمي تا سرعت بسيار زياد و سپس رها كردن آن به كار مي‌روند. اين موتورها معمولاً براي مطالعات برخورد سرعت بالا به عنوان تسليحات نظامي يا به عنوان راه‌اندازنده جرمي براي پيشرانه فضاپيما به كار مي‌رود. موتور خطي‌اي كه براي شتاب دادن به يون ها يا ذره‌هاي زير اتمي به كار مي‌رود، يك شتاب دهنده ذره ناميده مي‌شود. با نزديك شدن ذره‌ها به سرعت نور، طراحي موتورها معمولاً متفاوت مي‌شود و اين ذره‌ها نيز عموماً داري بار الكتريكي هستند.


شتاب پايين
ايده موتور خطي اولين بار توسط پرفسور اريك ليتويت از كالج امپريال در لندن مطرح شد. در طرح وي و در اكثر طرح‌هاي شتاب پايين، نيرو توسط يك ميدان مغناطيسي خطي سيار كه بر روي هادي‌ها موجود در ميدان عمل مي‌كند، ايجاد خواهد شد. در هر هادي‌ چه يك حلقه، چه يك سيم‌پيچ يا يك تكه از فلز تخت كه در اين ميدان قرار گيرد جريان‌هاي گردابي القا شده وجود خواهد داشت و بنابراين يك ميدان مغناطيسي مخالف را ايجاد خواهد كرد. دو ميدان مغناطيسي همديگر را دفع خواهند كرد و بنابراين جسم هادي را از استاتور دور خواهند كرد و آن را در طول جهت ميدان مغناطيسي سيار حمل خواهند كرد.
به علت اين ويژگي‌ها، موتور خطي اغلب در پيشرانه قطار مگليو به كار مي‌رود هر چند كه مي‌توان صرف نظر از پرواز مغناطيسي از آنها استفاده كرد، مانند استفاده در فن‌آوري انتقال پيشرفته و سريع نور كه در سيستم ترن آسماني ونكوور ، Scarborough RT تورنتو، ترن هوايي فرودگاه JGK نيويورك و Putra RTL كووالالامپور به كار مي‌رود. از اين فن‌آوري با تغييراتي در برخي از قطار‌هاي بازي

نيز استفاده مي‌شود.
موتورهاي خطي عمودي نيز براي مكانيسم‌هاي بالابر در معدن هاي عميق پيشنهاد شده است.


شتاب بالا
موتورهاي خطي شتاب بالا براي كاربرهاي متعددي پيشنهاد شده‌اند. به علت اينكه مهمات ضد زرهي كنوني بايستي گلوله‌هاي كوچكي با انرژي جنبشي بسيار بالا باشند يعني دقيقاً آنچه كه اين موتورها فراهم مي‌كنند، از آنها به عنوان تسليحات استفاده شده‌ است. اين موتورها همچنين براي استفاده در پيشرانه فضا پيماها به كار گرفته مي‌شود. در چنين شرايطي به اين موتورها راه‌اندازهاي جرمي گفته مي‌شود. ساده‌ترين روش استفاده از راه‌انداز جرمي براي پيشرانه فضا پيما، ساخت يك راه‌انداز جرمي بزرگ است كه بتواند محموله را تا سرعت گريز شتاب دهد.
طراحي موتورهاي شتاب بالا به دلايل متعددي مشكل است. آنها مقادير بزرگ انرژي را در مدت زمان كوتاه نياز دارند. كه براي هر پرتاب در فضا نياز به 300GJ در مدت زمان كمتر از يك ثانيه دارد. ژنراتورهاي الكتريكي معمولي براي چنين نوع از باري طراحي نشده‌اند اما روش‌هاي ذخيره انرژي الكتريكي كوتاه مدت را مي‌توان مورد استفاده قرار داد. خازن ‌ها پر حجم و گران هستند اما

مي‌توانند به سرعت مقادير بزرگ انرژي را فراهم كنند. ژنراتورهاي هم قطب را مي‌توان براي تبديل سريع انرژي جنبشي يك چرخ طيار به انرژي الكتريكي به كار برد. موتورهاي خطي شتاب بالا نيازمند ميدان‌هاي مغناطيسي بسيار قوي‌اي نيز هستند، در واقع ميدان‌هاي مغناطيسي اغلب آنقدر قوي اند كه اجازه استفاده از ابر رساناها را نمي‌دهند. اما با طراحي دقيق مي‌توان اين مشكل را حل كرد.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید