بخشی از مقاله
سير تكاملي ژنراتورهاي سنكرون
هدف از انجام اين تحقيق بررسي سير تحقيقات انجام شده با موضوع طراحي ژنراتور سنكرون است. به اين منظور، بررسي مقالات منتشر شده IEEE كه با اين موضوع مرتبط بودند، در دستور كار قرار گرفت. به عنوان اولين قدم كليه مقالات مرتبط در دهههاي مختلف جستجو و بر مبناي آنها يك تقسيمبندي موضوعي انجام شد. سپس سعي شد بدون پرداختن به جزييات، سيرتحولات استخراج شود. رويكرد كلي اين بوده است كه تحولات داراي كاربرد صنعتي بررسي شود.
با توجه به گستردگي موضوع و حجم مطالب، اين گزارش در دو بخش ارايه شده است. در بخش اول ابتدا پيشرفتهاي اوليه ژنراتورهاي سنكرون از آغاز تا دهه 1970 بررسي شده است و در ادامه تحولات دهههاي 1970 و 1980 به تفصيل مورد توجه قرار گرفتهاند. در پايان هر دهه يك جمعبندي از كل فعاليتهاي صورت گرفته ارايه و سعي شده است ارتباط منطقي پيشرفتهاي هر دهه با دهههاي قبل و بعد بيان شود.ماشين سنكرون همواره يكي از مهمترين عناصر شبكه قدرت بوده و نقش كليدي در توليد انرژي الكتريكي و كاربردهاي خاص ديگر ايفاء كرده است.
ساخت اولين نمونه ژنراتور سنكرون به انتهاي قرن 19 برميگردد. مهمترين پيشرفت انجام شده در آن سالها احداث اولين خط بلند انتقال سه فاز از لافن به فرانكفورت آلمان بود. دركانون اين تحول؛ يك هيدروژنراتور سه فاز 210 كيلووات قرار گرفته بود.
عليرغم مشكلات موجود در جهت افزايش ظرفيت وسطح ولتاژ ژنراتورها، در طول سالهاي بعد تلاشهاي گستردهاي براي نيل به اين مقصود صورت گرفت.مهمترين محدوديتها در جهت افزايش ظرفيت، ضعف عملكرد سيستمهاي عايقي و نيز روشهاي خنكسازي بود. در راستاي رفع اين محدوديتها تركيبات مختلف عايقهاي مصنوعي، استفاده از هيدروژن براي خنكسازي و بهينهسازي روشهاي خنكسازي با هوا نتايج موفقيتآميزي را در پي داشت به نحوي كه امروزه ظرفيت ژنراتورها به بيش از MVA1600 افزايش يافته است.
در جهت افزايش ولتاژ، ابداع پاورفرمر در انتهاي قرن بيستم توانست سقف ولتاژ توليدي را تا حدود سطح ولتاژ انتقال افزايش دهد به نحوي كه برخي محققان معتقدند در سالهاي نه چندان دور، ديگر نيازي به استفاده از ترانسفورماتورهاي افزاينده نيروگاهي نيست.همچنين امروزه تكنولوژي ژنراتورهاي ابررسانا بسيار مورد توجه است. انتظار ميرود با گسترش اين تكنولوژي در ژنراتورهاي آينده، ظرفيتهاي بالاتر در حجم كمتر قابل دسترسي باشند.
تاريخچه
ژنراتور سنكرون تاريخچهاي بيش از صد سال دارد. اولين تحولات ژنراتور سنكرون در دهه 1880 رخ داد. در نمونههاي اوليه مانند ماشين جريان مستقيم، روي آرميچر گردان يك يا دو جفت سيمپيچ وجود داشت كه انتهاي آنها به حلقههاي لغزان متصل ميشد و قطبهاي ثابت روي استاتور، ميدان تحريك را تامين ميكردند. به اين طرح اصطلاحاً قطب خارجي ميگفتند. در سالهاي بعد نمونه ديگري كه در آن محل قرار گرفتن ميدان و آرميچر جابجا شده بود مورد توجه قرار گرفت. اين نمونه كه شكل اوليه ژنراتور سنكرون بود، تحت عنوان ژنراتور قطب داخلي شناخته و جايگاه مناسبي در صنعتبرق پيدا كرد. شكلهاي مختلفي از قطبهاي مغناطيسي و سيمپيچهاي ميدان روي رتور استفاده شد، در حالي كه سيمپيچي استاتور، تكفاز يا سهفاز بود. محققان بزودي دريافتند كه حالت بهينه از تركيب سه جريان متناوب با اختلاف فاز نسبت به هم بدست ميآيد. استاتور از سه جفت سيمپيچ تشكيل شده بود كه در يك طرف به نقطه اتصال ستاره و در طرف ديگر به خط انتقال متصل بودند.
در واقع ايده ماشين جريان متناوب سه فاز، مرهون تلاشهاي دانشمندان برجستهاي مانند نيكولا تسلا، گاليلئو فراريس، چارلز برادلي، دبروولسكي، هاسلواندر بود.هاسلواندر اولين ژنراتور سنكرون سه فاز را در سال 1887 ساخت كه تواني در حدود 8/2 كيلووات را در سرعت 960 دور بر دقيقه (فركانس 32 هرتز) توليد ميكرد. اين ماشين داراي آرميچر سه فاز ثابت و رتور سيمپيچي شده چهار قطبي بود كه ميدان تحريك لازم را تامين ميكرد. اين ژنراتور براي تامين بارهاي محلي مورد استفاده قرار ميگرفت.در سال 1891 براي اولين بار تركيب ژنراتور و خط بلند انتقال به منظور تامين بارهاي دوردست با موفقيت تست شد. انرژي الكتريكي توليدي اين ژنراتور توسط يك خط انتقال سه فاز از لافن به نمايشگاه بينالمللي فرانكفورت در فاصله 175 كيلومتري منتقل ميشد. ولتاژ فاز به فاز 95 ولت، جريان فاز 1400 آمپر و فركانس نامي 40 هرتز بود. رتور اين ژنراتور كه براي سرعت 150 دور بر دقيقه طراحي شده بود، 32 قطب داشت. قطر آن 1752 ميليمتر و طول موثر آن 380 ميليمتر بود. جريان تحريك توسط يك ماشين جريان مستقيم تامين ميشد. استاتور آن 96 شيار داشت كه در هر شيار يك ميله مسي به قطر 29 ميليمتر قرار ميگرفت. از آنجا كه اثر پوستي تا آن زمان شناخته نشده بود، سيمپيچي استاتور متشكل از يك ميله براي هر قطب / فاز بود. بازده اين ژنراتور 5/96% بود كه در مقايسه با تكنولوژي آن زمان بسيار عالي مينمود.
طراحي و ساخت اين ژنراتور را چارلز براون انجام داد.در آغاز، اكثر ژنراتورهاي سنكرون براي اتصال به توربينهاي آبي طراحي ميشدند، اما بعد از ساخت توربينهاي بخار قدرتمند، نياز به توربوژنراتورهاي سازگار با سرعت بالا احساس شد. در پاسخ به اين نياز اولين توربورتور در يكي از زمينههاي مهم در بحث ژنراتورهاي سنكرن، سيستم عايقي است. مواد عايقي اوليه مورد استفاده مواد طبيعي مانند فيبرها، سلولز، ابريشم، كتان، پشم و ديگر الياف طبيعي بودند. همچنين رزينهاي طبيعي بدست آمده از گياهان و تركيبات نفت خام براي ساخت مواد عايقي مورد استفاده قرارميگرفتند.
در سال 1908 تحقيقات روي عايقهاي مصنوعي توسط دكتر بايكلند آغاز شد. در طول جنگ جهاني اولي رزينهاي آسفالتي كه بيتومن ناميده ميشدند، براي اولين بار همراه با قطعات ميكا جهت عايق شيار در سيمپيچهاي استاتور توربوژنراتورها مورد استفاده قرار گرفتند. اين قطعات در هر دو طرف، با كاغذ سلولز مرغوب احاطه ميشدند. در اين روش سيمپيچهاي استاتور ابتدا با نوارهاي سلولز و سپس با دو لايه نوار كتان پوشيده ميشدند. سيمپيچها در محفظهاي حرارت ميديدند و سپس تحت خلا قرار ميگرفتند. بعد از چند ساعت عايق خشك و متخلخل حاصل ميشد. سپس تحت خلا، حجم زيادي از قير داغ روي سيمپيچها ريخته ميشد. در ادامه محفظه با گاز نيتروژن خشك با فشار 550 كيلو پاسكال پر و پس از چند ساعت گاز نيتروژن تخليه و سيمپيچها در دماي محيط خنك و سفت ميشدند. اين فرآيند وي پيآي ناميده ميشد.
در اواخر دهه 1940 كمپاني جنرال الكتريك به منظور بهبود سيستم عايق سيمپيچي استاتور تركيبات اپوكسي را برگزيد. در نتيجه اين تحقيقات، يك سيستم به اصطلاح رزين ريچ عرضه شد كه در آن رزين در نوارها و يا وارنيش مورد استفاده بين لايهها قرار ميگرفت.
در دهههاي 1940 تا 1960 همراه با افزايش ظرفيت ژنراتورها و در نتيجه افزايش استرسهاي حرارتي، تعداد خطاهاي عايقي به طرز چشمگيري افزايش يافت. پس از بررسي مشخص شد علت اكثر اين خطاها بروز پديده جدا شدن نوار يا ترك خوردن آن است. اين پديده به علت انبساط و انقباض ناهماهنگ هادي مسي و هسته آهني به وجود ميآمد. براي حل اين مشكل بعد از جنگ جهاني دوم محققان شركت وستينگهاوس كار آزمايشگاهي را بر روي پلياسترهاي جديد آغاز كرده و سيستمي با نام تجاري ترمالاستيك عرضه كردند.نسل بعدي عايقها كه در نيمه اول دهه 1950 مورد استفاده قرار گرفتند، كاغذهاي فايبرگلاس بودند. در ادامه در سال 1955 يك نوع عايق مقاوم در برابر تخليه جزيي از تركيب 50 درصد رشتههاي فايبرگلاس و 50 درصد رشتههاي PET بدست آمد كه روي هادي پوشانده ميشد و سپس با حرارت دادن در كورههاي مخصوص، PET ذوب شده و روي فايبرگلاس را ميپوشاند.
اين عايق بسته به نياز به صورت يك يا چند لايه مورد استفاده قرار ميگرفت. عايق مذكور با نام عمومي پليگلاس و نام تجاري داگلاس وارد بازار شد.مهمترين استرسهاي وارد بر عايق استرسهاي حرارتي است. بنابراين سيستمهاي عايقي همواره در ارتباط تنگاتنگ با سيستمهاي خنكسازي بودهاند. خنكسازي در ژنراتورهاي اوليه توسط هوا انجام ميگرفت. بهترين نتيجه بدست آمده با اين روش خنكسازي يك ژنراتور MVA200 با سرعت rpm1800 بود كه در سال 1932 در منطقه بروكلين نيويورك نصب شد. اما با افزايش ظرفيت ژنراتورها نياز به سيستم خنكسازي موثرتري احساس شد. ايده خنكسازي با هيدروژن اولين بار در سال 1915 توسط ماكس شولر مطرح شد.
تلاش او براي ساخت چنين سيستمي از 1928 آغاز و در سال 1936 با ساخت اولين نمونه با سرعت rpm3600 به نتيجه رسيد. در سال 1937 جنرال الكتريك اولين توربوژنراتور تجاري خنك شونده با هيدروژن را روانه بازار كرد. اين تكنولوژي در اروپا بعد از سال 1945 رايج شد. در دهههاي 1950 و 1960 روشهاي مختلف خنكسازي مستقيم مانند خنكسازي سيمپيچ استاتور با گاز، روغن و آب پا به عرصه ظهور گذاشتند تا آنجا كه در اواسط دهه 1960 اغلب ژنراتورهاي بزرگ با آب خنك ميشدند. ظهور تكنولوژي خنكسازي مستقيم موجب افزايش ظرفيت ژنراتورها به ميزان MVA1500 شد.يكي از تحولات برجستهاي كه در دهه 1960 به وقوع پيوست توليد اولين ماده ابررساناي تجاري يعني نيوبيوم- تيتانيوم بود كه در دهههاي بعدي بسيار مورد توجه قرار گرفت.
تحولات دهه 1970
در اين دهه تحول مهمي در فرآيند عايق كاري ژنراتور رخ داد. قبل از سال 1975 اغلب عايقها را توسط رزينهاي محلول در تركيبات آلي فرار اشباع ميكردند. در اين فرآيند، تركيبات مذكور تبخير و در جو منتشر ميشد. با توجه به وضع قوانين زيست محيطي و آغاز نهضت سبز در اوايل دهه 1970، محدوديتهاي شديدي بر ميزان انتشار اين مواد اعمال شد كه حذف آنها را از اين فرآيند در پي داشت. در نتيجه استفاده از مواد سازگار با محيط زيست در توليد و تعمير ماشينهاي الكتريكي مورد توجه قرار گرفت. استفاده از رزينهاي با پايه آبي يكي از اولين پيشنهاداتي بود كه مطرح شد، اما يك راهحل جامعتر كه امروزه نيز مرسوم است، كاربرد چسبهاي جامد بود. در همين راستا توليد نوارهاي ميكاي رزين ريچ بدون حلال نيز توسعه يافت.
از ديگر پيشرفتهاي مهم اين دهه ظهور ژنراتورهاي ابررسانا بود. يك ماشين ابررسانا عموماًاز يك سيمپيچ ميدان ابررسانا و يك سيمپيچ آرميچر مسي تشكيل شده است. هسته رتور عموماً آهني نيست، چرا كه آهن به دليل شدت بالاي ميدان توليدي توسط سيمپيچي ميدان اشباع ميشود. فقط در يوغ استاتور از آهن مغناطيسي استفاده ميشود تا به عنوان شيلد و همچنين منتقل كننده شار بين قطبها عمل كند. عدم استفاده از آهن، موجب كاهش راكتانس سنكرون (به حدود pu5/0- 3/0) در اين ماشينها شده كه طبعاً موجب پايداري ديناميكي بهتر ميشود.
همانطور كه اشاره شد، اولين ماده ابررساناي تجاري نيوبيوم- تيتانيوم بود كه تا دماي 5 درجه كلوين خاصيت ابررسانايي داشت. البته در دهههاي بعد پيشرفت اين صنعت به معرفي مواد ابررسانايي با دماي عملكرد 110 درجه كلوين انجاميد. براين اساس مواد ابررسانا را به دو گروه دما پايين مانند نيوبيوم – تيتانيوم و دما بالا مانند BSCCO-2223 تقسيم ميكنند. از اوايل دهه 1970 تحقيقات بر روي ژنراتورهاي ابررسانا با استفاده از هاديهاي دما پايين آغاز شد. در اين دهه كمپاني وستينگهاوس تحقيقات براي ساخت يك نمونه دوقطبي را با استفاده هاديهاي دماپايين آغاز كرد. نتيجه اين پروژه ساخت و تست يك ژنراتور MVA5 در سال 1972 بود.در سال 1970 كمپاني جنرال الكتريك ساخت يك ژنراتور ابررسانا را با استفاده از هاديهاي دماپايين، با هدف نصب در شبكه آغاز كرد.
ساخت و تست اين ژنراتور MVA20، دو قطب و rpm3600 در سال 1979 به پايان رسيد. در اين ماشين از روش طراحي هسته هوايي بهره گرفته شده بود و سيمپيچ ميدان آن توسط هليم مايع خنك ميشد. اين ژنراتور، بزرگترين ژنراتور ابررساناي تست شده تا آن زمان (1979) بود.در سال 1979 وستينگهاوس و اپري ساخت يك ژنراتور ابررساناي MVA300 را آغاز كردند. اين پروژه در سال 1983 به علت شرايط بازار جهاني با توافق طرفين لغو شد.در همين زمينه كمپاني زيمنس ساخت ژنراتورهاي دماپايين را در اوايل دهه 1970 شروع كرد. در اين مدت يك نمونه رتور و يك نمونه استاتور با هسته آهني براي ژنراتور MVA 850 با سرعت rpm3000 ساخته شد، اما به دليل مشكلاتي تست عملكرد واقعي آن انجام نشد.در اين دهه آلستوم نيز طراحي يك رتور ابررسانا براي يك توربو ژنراتور سنكرون را آغاز كرد. اين رتور در يك ماشين MW250 به كار رفت.با توجه به اهميت خنكسازي در كاركرد مناسب ژنراتورهاي ابررسانا، همگام با توسعه اين صنعت، طرحهاي خنكسازي جديدي ارايه شد.
در 1977 اقاي لاسكاريس يك سيستم خنكسازي دوفاز (مايع- گاز) براي ژنراتورهاي ابررسانا ارايه كرد. در اين طرح بخشي از سيمپيچ در هليم مايع قرار ميگرفت و با جوشش هليم دردماي 2/4 كلوين خنك ميشد. جداسازي مايع ازگاز توسط نيروي گريز از مركز ناشي از چرخش رتور صورت ميگرفت.