بخشی از پاورپوینت

اسلاید 1 :

دینامیک سیالات عددی 1

اسلاید 2 :

مقدمات روش تفاضل محدود: تخمین مشتقات
حل معادله

اسلاید 3 :

مقدمات روش تفاضل محدود: تخمین مشتقات
مقدمه
هدف ما بدست‏آوردن مقدار خود متغیر وابسته است ولی، معادله دیفرانسیل، بر اساس مشتقات بیان شده است. لذا در روش عددی تفاضل محدود، مقادیر مشتقات در هر یک از گره‏ها را بر حسب مقادیر خود متغیر در همان گره و گره‏های همسایه تخمین می‏زنیم.
قبلاً در معرفی روش تفاضل محدود در جلسات قبل دیدیم که با این کار، معادله دیفرانسیل به یک دستگاه معادلات جبری خطی تبدیل می‏شود.
در این تخمین زدن مقادیر مشتقات، از بسط تیلور استفاده می‏کنیم.
برای سادگی با مسأله یک‏بعدی شروع می‏کنیم یعنی معادله‏ای با یک متغیر مستقل x را در نظر می‏گیریم. نتایج به راحتی قابل تعمیم به دو بعد و سه‏بعد است.

اسلاید 12 :

بسط تیلور (یک‏بعدی)
روابط TE.01 و TE.02 را به یاد آورید.
رابطه اول را منهای رابطه دوم کنید.

اسلاید 14 :

بسط تیلور (یک‏بعدی)
حال می‏خواهیم مشتق مرتبه دوم را محاسبه کنیم. مجدداً، روابط TE.01 و TE.02 را به یاد آورید.
روابط فوق را با هم جمع کنید.

اسلاید 18 :

بسط تیلور (یک‏بعدی)

مشتق مرتبه اول را از رابطه فوق محاسبه می‏کنیم. (اثبات کنید.)

لذا:

برای گره i ام شبکه داریم:

اسلاید 20 :

بسط تیلور (یک‏بعدی)

مشتق مرتبه دوم را از رابطه فوق محاسبه می‏کنیم. (اثبات کنید.)

لذا:

برای گره i ام شبکه داریم:

در متن اصلی پاورپوینت به هم ریختگی وجود ندارد. برای مطالعه بیشتر پاورپوینت آن را خریداری کنید