بخشی از پاورپوینت
--- پاورپوینت شامل تصاویر میباشد ----
اسلاید 1 :
Relaxed problems
مسائل تعديل شده
- A problem with fewer restrictions on the actions is called a relaxed problem
The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem - If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h1(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h2(n) gives the shortest solution
- تركيب هيوريستيك ها: h(n)=max(h1(n), h2(n), .. hm(n))
- اگر همه hiها قابل قبول باشند h(n) هم قابل قبول و اگر همه سازگار باشند h(n) هم سازگار خواهد بود
اسلاید 2 :
Local search algorithms
- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution, such as 8 queens problem
- State space = set of "complete" configurations
- Find configuration satisfying constraints, e.g., n-queens
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it
اسلاید 3 :
Example: n-queens
- Put n queens on an n × n board with no two queens on the same row, column, or diagonal
اسلاید 4 :
مزاياي جستجوي محلي
- استفاده از حافظه بسيار كم تقريبا ثابت
- امكان استفاده در فضاهاي حالت بزرگ و نا متناهي (پيوسته)
مناسب برای مسائل بهینه سازی.
اسلاید 5 :
Hill-climbing search
- "Like climbing Everest in thick fog with amnesia”
- همسايه هاي مجاور(توليد شده توسط تابع پسين) را بررسي مي كند و اگر حالتي بهتر است آن را جايگزين حالت فعلي ميكند
اسلاید 6 :
Hill-climbing search
- Problem: depending on initial state, can get stuck in local maxima
اسلاید 7 :
Properties of simulated annealing search
- One can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, airline scheduling, etc
اسلاید 8 :
Local beam search
جستجوي پرتوي محلي
- Keep track of k states rather than just one
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
If any one is a goal state, stop; else select the k best successors (or randomly) from the complete list and repeat.
اسلاید 9 :
Genetic algorithms
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher (sometimes lower) values for better states.
- Produce the next generation of states by selection, crossover, and mutation
- A successor state is generated by combining two parent states
- A suitable GUI for GA in MATLAB: gatool
اسلاید 10 :
- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
24/(24+23+20+11) = 31%
23/(24+23+20+11) = 29% etc