دانلود مقاله لایه بندی اب

word قابل ویرایش
46 صفحه
9700 تومان
97,000 ریال – خرید و دانلود

۲ـ لایه‌بندی آب (water stratification)
یکی از ویژگی‌های اصلی دریاچه‌ها، تمایل آنها به لایه‌بندی شدن است. لایه‌بندی شدن براساس اختلاف چگالی می‌باشد و چگالی در دریاچه‌های لایه‌بندی شده از پایین به بالا کاهش می‌یابد. اختلاف چگالی در اثر درجه حرارت، میزان مواد معلق و شوری به وجود می‌آید. در دریاچه‌ها، لایه‌بندی براساس دما بیشتر از اختلاف در شوری و میزان مواد معلق اهمیت دارد. و در این نوع دریاچه‌ها سرعت کاهش چگالی، با افزایش دما، افزایش می‌یابد، به طوری که به عنوان مثال مقدار نیروی مورد نیاز برای مخلوط کردن دو توده آب لایه‌بندی شده در ۲۹ و ۳۰

درجه سانتی‌گراد، ۴۰ برابر مقدار نیروی مورد نیاز برای دو توده مشابه ۵ و ۴ درجه سانتی‌گراد است. بنابراین دریاچه‌های گرمسیری آسانتر از دریاچه‌های مناطق معتدله لایه‌بندی می‌شوند، اما کاهش دمای جزئی در یک دریاچه گرمسیری باعث ایجاد جریان‌های همرفتی به طرف بالا می‌شود که اگر طولانی مدت باشد، ممکن است سرانجام بر روی تمام جسم آب اثر گذاشته و منجر به مخلوط شدن دو لایه شود.

دانسیته همچنین بستگی به میزان نمک حل شده دارد. در این دریاچه‌های از نظر شیمیایی لایه‌بندی شده، لایه زیرین شورتر بوده و لایه‌بندی بسیار پایدار است و مخلوط شدگی کم یا اصلاً وجود ندارد. هالوکلاین (Haloclin)، لایه‌ای از آب در این دریاچه‌ها است که تغییر میزان شوری سریعتر است و لایه سطحی که شوری کمتری دارد و آزادانه می‌چرخد، میکسوکلاین (mixocline) و لایه زیرین با چگالی بیشتر و شورتر monimolimnion نام دارد. این لایه‌بندی با رقیق شدن لایه‌های سطحی با ورودی‌های آب شیرین، بارش افزایش می‌یابد. (تصویر۱)
در دریاچه‌های یخچالی، غلظت رسوبات معلق عامل مؤثر و اصلی بر روی چگالی می‌باشد و اختلاف دما در مقایسه بامیزان مواد معلق کم اهمیت می‌باشد. (Gustavson, 1995)
بیشترین منشأ گرما برای دریاچه‌ها، نور خورشید می‌باشد، جریان ژئوترمال از منابع عمیق حداقل می‌باشد.

 

تصویر ۱: ترموکلاین، هالوکلاین و پاینوکلاین (Pinet, 2006)
کاهش دما با عمق در نتیجه اشعه گرمایی در سطح است. نیمرخ عمودی دما از یک دریاچه، پاسخ مستقیمی به نفوذ نور خورشید است (تصویر۲). در دریاچه‌های از نظر گرما لایه‌بندی شده، یک لایه فوقانی گرم و اکسیژن‌دار دارای چرخش که اپی‌لیمنیون (epilimnion) نامیده می‌شود، بر روی مناطق زیرین سرد و نسبتاً ساکن به نام هایپولیمنیون (hypolimnion) کشیده شده است هایپولیمنیون در برخی مواقع احیایی است و اجازه حفظ شدن مواد ارگانیکی بر روی بستر دریاچه‌ای را می‌دهد. منطقه حد واسط متالیمنیون (metalimnion) نامیده می‌شود و سطحی که دما به سرعت با عمق کاهش می‌یابد ترموکلاین (Thermocline) نامیده می‌شود. (E. Tucker & V.wright, 1990)

 

تصویر ۲٫ پروفیل دمایی دریاچه Tangayika، منطقه اپی‌لیمنیون با چرخش رو به پایین در حدود ۸۰-۵۰ متر در چرخش‌های روزانه، متالیمنیون با چرخش حداقل ۲۰۰m در چرخش‌های فصلی و هالیپولیمنیون با حالت آنوکسیدی و دمای یکنواخت یا دمای متفاوت (Beadle, 1974)
Ahmad، (j.Ahmad, 2005) لایه‌بندی فصلی را این‌گونه توضیح می‌دهد:

در پاییز دمای هوا در سطح دریاچه سرد است و در نتیجه آب‌های سطحی سرد با چگالی بیشتر به طرف پایین فرو می‌رود. در نهایت دمای کل آب دریاچه به Fْ۳۹ (cْ۴، بیشترین چگالی آب در این دماست).در هنگام زمستان سطح آب دریاچه در دمایcْ۰ یا Fْ۳۲ یخ می‌زند که چگالی آب سطحی کمتر از آب زیر آن است و پوشش یخی در سطح دریاچه مانع جریان باد و مخلوط شدن آب می‌شود، در نتیجه لایه‌بندی زمستانه (winter stratification) را داریم.

در هنگام بهار، یخ ذوب می‌شود و دمای آب بیشتر از صفر می‌شود. افزایش چگالی آب گرم همراه با عمل باد باعث می‌شود آب سطحی در آب‌های عمیق فرو رود و مخلوط شود. این فرایند تغییر بهاره (spring tamover) نامیده می‌شود. در طول این دوره زمانی، بیشتر آب دریاچه با همان دما می‌باشد و آب سطحی و عمقی آزادانه مخلوط می‌شود. دریاچه‌های با سطح کوچک، به ویژه اگر از باد حفظ شود، در بهار معمولاً فقط برای چند روز کاملاً مخلوط می‌شوند. در برابر این، دریاچه‌های بزرگ اغلب هفته‌ها دارای چرخش آب هستند.

با ادامه گرم شدن سطح دریاچه در اواخر بهار و اوایل تابستان، اختلاف دمای بین آب سطحی و عمقی افزایش می‌یابد. در دریاچه‌های عمیق‌تر از ۱۰ تا ۱۲ فوت، اختلاف دمایی سرانجام نیروی به اندازه کافی قوی برای مقاومت در برابر نیروی مخلوط کنندگی باد ایجاد خواهد کرد (فقط احتیاج به اختلاف چند درجه فارنهایت برای جلوگیری از مخلوط شدن دارد.) هم اکنون آب سرد ۳ لایه‌ای (اپی‌لیمنیون و هایپولیمنیون) است و لایه‌بندی تابستانه (summer stratification) نامیده می‌شود. متالیمنیون در مقابل مخلوط شدگی توسط باد به شدت مقاوم است.

مهم‌ترین اعمالی که باعث مخلوط شدگی آب دریاچه می‌شوند، شامل باد، آب‌های ورودی و آب‌های خروجی می‌باشند، در حالی که باد بر روی آب‌های سطحی همه دریاچه‌ها اثر می‌گذارد، توانایی آن برای مخلوط کردن حجم آب ورودی دریاچه‌های با لایه‌بندی تابستانه کاملاً کاهش می‌یابد. این کاهش به علت تغییر سریع در دما و چگالی درون متالیمنیون است که شبیه به یک سد فیزیکی بین اپی‌لیمنیون و هاپیولیمنیون عمل می‌کند. برای قطع کردن سد، انرژی زیادی لازم است.

دریاچه‌هایی که در آب‌های تحتانی خود در زمان سرمای زمستان دارای چرخش کامل هستند، هولومیکتیک (Holomictic) نامیده می‌شوند، دریاچه‌های پلی مکتیک (polymictic) دریاچه‌هایی هستند که هرگز لایه‌بندی نمی‌شوند، یا لایه‌بندی دمائی مقاومی را نشان نمی‌دهند و اغلب فقط به صورت روزانه‌اند. دریاچه‌های الیگومیکتیک بندرت دچار مخلوط شدگی می‌شوند. آنها به طور تیپیک کوچک هستند، اما دریاچه‌های گرمسیری خیلی عمیق به طور مشخص الیگومیکتیک، و با اختلاف دمایی اندکی در همه اعماق گرم هستند.

پایداری لایه‌بندی دریاچه بستگی به عوامل زیادی دارد. مهم‌ترین آن عمق، شکل و اندازه دریاچه است. اگرچه آب و هوا و جهت‌یابی دریاچه به طرف باد، جریانات ورودی / خروجی نقش مهمی دارند. تغییرات فصلی در دمای هوا و جریان‌های توربیدیتی ایجاد شده توسط اختلال در باد باعث از بین رفتن لایه‌بندی در لایه‌های فوقانی و زیرین‌تر وکلاین می‌شود. در دریاچه‌های کم عمق (کمتر از ۱۰ تا ۱۲ فوت عمق) نیروی باد به اندازه کافی قوی برای مخلوط کردن آب‌های سطحی و عمقی است و بنابراین مانع ایجاد لایه‌بندی تابستانه می‌شود. در دریاچه‌های با گردش و ورود مداوم آب، لایه‌بندی گرمایی توسعه پیدا نمی‌کند. در حالی که در چنین دریاچه‌هایی ممکن است، شیب گرمایی از آب‌های گرمتر سطحی به آب‌های سردتر عمقی

وجود داشته باشد، متالیمنیون واقعی به طور مشخص تشکیل نمی‌شود. لایه‌بندی تابستانه تا پاییز که آب‌های سردتر عمقی وجود داشته باشد، متالیمنیون واقعی به طور مشخص تشکیل نمی‌شود. لایه‌بندی تابستانه تا پاییز که آب‌های سطحی سرد و فرو رو می‌شوند، ادامه دارد. با سرد شدن آب دریاچه متالیمنیون ضعیف و از بین می‌رود. انرژی باد به اختلاط عمیق‌تر دریاچه کمک می‌کند. در این زمان کل دریاچه به یک دمای مشابه می‌رسد، نیروی باد دوباره قادر به مخلوط کردن آب‌های فوقانی و تحتانی است که تغییر پاییزه (fall turnover) نامیده می‌شود که اگر همراه با باد باشد فقط چند ساعت لایه‌بندی تابستانه به تغییر پاییزه تبدیل می‌شود.

۱ـ۲ـ اثرات لایه‌بندی آب:
لایه‌بندی آب کاربرد مهمی در مدیریت ماهی‌گیری، اجتماعات فیتوپلانکتون‌ها و کیفیت آب دارد.
میزان اکسیژن: تنها بعد از این که لایه‌بندی تابستانه پایدار شد، هیپولیمنیون از اکسیژن حل شده حاصل از مخلوط شدگی در ابتدای بهار، غنی می‌شود. اما به علت عمل متالیمنیون به صورت یک سر بین اپی‌لیمنیون و هایپولیمنیون است که اساساً تبادل اکسیژن، هایپولیمنیون با اتمسفر قطع می‌شود، و اغلب به علت رشد و تولید اکسیژن توسط فوتوسنتز تیره از گیاهان و جلبک‌ها می‌باشد. (رزون نوردار دریاچه (غنی از مواد غذایی)، در ادامه تابستان هایپولیمنیون می‌تواند آنوکسید (بدون اکسیژن، یا غیرهوازی) باشد. این کمبود اکسیژن در اثر مصرف

شدن توسط باکتری‌ها و دیگر ارگانیسم‌ها ایجاد می‌شود. بنابراین دراثر مخلوط شدگی لایه‌ها در اثر طوفان، مرگ دسته‌جمعی جلبک‌ها و فیتوپلانکتون‌های موجود در سطح دریاچه رخ می‌دهد و چون شرایط غیرهوازی است، مواد آلی حاصل از این موجودات حفظ می‌شوند. علاوه بر این ماهی‌ها در سطوح بالایی دریاچه که اکسیژن به مقدار کافی وجود دارد فراوان‌اند.
فسفرها و نیتروژن‌ها: در شرایط غیرهوازی، مواد غذایی فسفردار و نیتروژن آمونیوم بیشتر حل می‌شوند و از رسوبات بستر به درون هایپولیمنیون آزاد می‌شوند. در طول تابستان، دریاچه‌های لایه‌بندی شده، برخی مواقع می‌توانند به طور ناقص مخلوط شوند (همچون عبور زبانه‌های سرد در اثر نیروی بادهای قوی و باران‌های خیلی سرد). در این صورت مواد غذایی به درون اپی‌‌لیمنیون فرار می‌کنند و باعث افزایش رشد جلبک‌ها می‌شوند. ماهی‌ها حساس به آمنیوم هستند و به سطوح بالای آب نمی‌روند. (J.Ahmad, 2005)
3ـ فرایندهای اصلی عمل کننده در دریاچه:

فرایندهای فیزیکی و شیمیایی و بیوشیمیایی، رسوبگذاری دریاچه‌ای را تحت تأثیر قرار می‌دهند، طبیعت و نقش این عوامل کاملاً متفاوت با محیط‌های دریایی است.
۱ـ۳ـ فرایندهای فیزیکی :

باد مهم‌ترین فرایند فیزیکی در دریاچه‌هاست. حرکت آب عمدتاً تحت تأثیر باد می‌باشد، با فرایندهای جزر و مدی که حتی در دریاچه‌های بزرگ نیز مهم نمی‌باشد. امواج سطحی تولید شده توسط باد، بر روی حرکت رسوبات مؤثرند و باعث آشفتگی در اپی‌لیمنیون و در نتیجه مخلوط شدگی آب دریاچه می‌شوند. عمل امواج در دریاچه‌های کم عمق تحت تأثیر باید، منجر به ایجاد دریاچه‌های بدون لایه‌بندی یا پلی مکتیک می‌شود. در آب‌های کم عمق، عمل امواج باعث به حرکت درآوردن رسوب می‌شود و از ریشه دواندن گیاهانی همچون کاروفتیا جلوگیری می‌کند، بنابراین این گیاهان در آب‌های عمیق‌تر که کمتر آشفته‌اند، در طول حاشیه‌های دریاچه تشکیل می‌شوند. آلن (Allen, 1981) ن

شان داده است که ممکن است با استفاده از ساختارهای رسوبی تشکیل شده توسط امواج در دریاچه‌های تحت تأثیر باد، عمق و اندازه دریاچه‌های قدیمه را تخمین زد.
فعالیت امواج در دریاچه‌ها باعث ایجاد اشکال ساحلی مشخص همچون سدها (bows) می‌شود، اما این اشکال بخوبی در دریاچه‌های کربناته ثبت نشده است. عمل امواج همچنین در تولید انواع مختلف دانه‌های پوشش‌دار (coated grains) مهم می‌باشد.

از انواع جریان‌هایی که در دریاچه‌ها وجود دارد، جریان‌های تحت تأثیر باید مهم‌تر هستند. با ادامه وزش باد، در جهت باد، آب‌ها بالا آمده و حرکت می‌کنند و کمی زیر سطح جریان‌های برگشتی تولید می‌شود. ممکن است جریان‌های در نتیجه گرم شدن آب‌های کم عمق نزدیک ساحل یا تحت تأثیر آب رودخانه ایجاد شوند. این رودخانه‌ها، جریان‌های سنگینتر با بار رسوبی هستند که همیشه با آب‌های دریاچه مخلوط نمی‌شوند، اما ممکن است به صورت جریانهای دانسیته به درون آب‌های دریاچه، جریان یابند. انواع مختلفی از جریان می‌تواند تشکیل شود (تصویر ۳)، همچون جریان‌های فوقانی و تحتانی (over flows، under flows، اگر جریان ورودی از هایپولیمنیون چگالتر باشد)، یا حتی به صورت جریان‌های بینابینی (inter flow، اگر جریان چگالتر از اپی‌لیمنیون و سبک‌تر از هایپولیمنیون باشد.)

 

تصویر ۳٫ نحوه توزیع مکانیسم‌ها و در نتیجه انواع رسوبات حاصل از رسوبگذاری تخریبی در دریاچه‌های الیگومیکتیک با لایه‌بندی گرمایی دائمی. براساس دریاچه Brienz در سوئیس. عرض حوضه و ضخامت رسوبات بدون رعایت مقیاس. (Sturm & Matter, 1998)

در مجاور دلتاهای رودخانه‌ای، مواد تخریبی می‌توانند به رسوبات رودخانه‌ای اضافه شوند. علاوه بر این جریان‌های توربیدیتی، یعنی حرکات ناگهانی بر روی شیب از آب‌های با بار رسوبی، فراوان‌اند. آنها در طول حاشیه‌های پرشیب دریاچه مهم هستند و مواد دوباره پخش شده بر روی شیب رسوب می‌کنند. این جریان‌ها بر روی شیب‌های با زاویه ْ۵ درجه می‌توانند رخ می‌دهند و باعث ایجاد لامیناسیون دانه تدریجی به ویژه در منطقه عمیق (profundal zone) می‌شوند.

رسوبات جریان‌های گرادتیر در تشکیل سواحل لیتورال (یلتنوم‌های امواج) اهمیت دارند. پیشروی ساحل به درون دریاچه‌های کم عمق در نتیجه حمل و نقل کربنات‌های لیتورال و عبور از منطقه لیتورال می‌باشد و توسط جریان‌های ثقلی ـ رسوبی بر روی شیب ساحلی پیشرونده، رسوب می‌کنند. در حوضه‌های دریاچه‌ای کوچک مناطق معتدله در میشیگان که توسط تریز و ویلکینسون (Treese & Wilkinson, 1982) توصیف شده است، قطعات بزرگ نابرجا از کربنات‌های لیتورال توسط لغزش به درون بخش‌های عمیق‌تر حوضه انتقال یافته و بخش قابل توجهی از رسوبات عمیق را تشکیل داده است.

جزئیات بیشتر فرایندهای فیزیکی در دریاچه‌ها توسط اسلای (sly, 1978) مرور شده است.
۲-۳- فرایندهای شیمیایی:
بحث در مورد فرایندهای شیمیایی احتیاج به در نظر گرفتن رسوبگذاری کربنات کلسیم در دریاچه‌های با آب سخت و نیز رسوبگذاری و تکامل شورا به ها در سیستم‌های از نظر هیدرولوژیکی بسته دارد.

به نقل از جونیز و بوسر (Jones & Bowser, 1978)، کربنات کلسیم در رسوبات دریاچه‌ای ۴ منبع دارد:
۱ـ کربنات‌های تخریبی که توسط رودخانه‌ها از خشکی آورده شده‌اند و یا توسط فرسایش خطوط ساحلی ایجاد شده‌اند. این کربنات‌ها شامل کربنات‌های دریاچه دوباره انتقال یافته هستند، که در هنگام پایین بودن سطح آب دریاچه، رخنمون دارند.

۲ـ کربنات‌های بیوژنیک مشتق شده از بقایای اسکلتی ارگانیسم‌های مختلف همچون مالوسک‌ها، کاروفیتا و فیتوپلانکتون‌ها.
۳ـ کربنات‌هایی که به طور غیرارگانیکی ته نشین یافته‌اند، که در واقع به صورت بیوژنتیکی تولید شده‌اند.
۴ـ کربنات‌های دیاژنزی که در اثر تغییر بعد از رسوبگذاری از دیگر کانی‌های کربناته حاصل شده‌اند.

دما و فشار Co2 از عوامل مهم در رسوبگذاری کربنات کلسیم می‌باشند. افزایش دما یا کاهش فشار Co2 باعث ته‌نشست می‌شود، اما درجه اشباع شدن در نتیجه افزایش دما اندک است، به طوری که خارج شدن گاز Co2، عامل اصلی رسوبگذاری در دریاچه‌هاست. ممکن است رسوبگذاری در اثر افزایش دما در منطقه لیتورال دریاچه‌ها، جایی که نوسانات دمای فصلی و سالانه بیشتر رخ می‌دهد، مهم‌تر باشد. رسوبگذاری در نتیجه فوق اشباع شدن در نتیجه تحول بهاره (spring overtuming) در دریاچه‌های دمایی در زمانی که آب‌های سرد هایپولیمنیون به سطح آورده و به سرعت گرم می‌شود، رخ می‌دهد. (ludlam, 1981). کربنات کلسیم می‌تواند در آب‌های پلاژیک برای تولید “whiting” توسط موجودات شناور، ته‌نشست یابد (Neev & Emery, 1967)

خارج شدن طبیعی گاز Co2 از دریاچه به اتمسفر یک فرایند آهسته است و از اهمیت اندکی در خروج گاز Co2 از دریاچه، برخوردار است. مهم‌ترین فرایند خروج Co2، فوتوسنتز و در نتیجه تولید بیوژنزی CaCo3 است. و به طور مشخص در اواخر بهار و تابستان که فوتوسنتز بالاست، رخ می‌دهد. معمولاً ته‌نشینی کربنات زمانی که آب فوق اشباع است رخ نمی‌دهد، بلکه ته‌نشینی کربنات زمانی است که اشباع شدگی ده مرتبه بیشتر از حد تئوری اشباع شدگی باشد.
ممکن است خروج گاز Co2 در نتیجه آشفتگی در مناطق تحت تأثیر امواج باعث به حرکت درآوردن ذرات رسوبی و ایجاد پوشش‌های کربناته بر روی آنها شود. خروج چشمه‌ها در منطقه لیتورال، ممکن است کربنات را در آب‌های دریاچه‌ای زمانی که گرم هستند و ف

شار Co2 براثر خروج Co2 پایین است، رسوب دهد. ویسکر و ائوجستر (Risacher & Eugster, 1979)، انواع مختلفی از قشرها را که ممکن است تشکیل شوند را شرح داده‌اند.
اندازه و شکل نهشته‌ها تحت تأثیر وجه اشباع است. تحقیقاتی که توسط کلتز وسو (Kelts & Hsu, 1978) بر روی دریاچه زور یخ (Zurich) انجام شده است، نشان می‌دهد که بلورهای بزرگ در اشباع شدگی پایین و بلورهای ریز در اشباع شدگی بالا تشکیل شده‌اند.

مولر و دیگران (Muller et al, 1982) بیان کردند که در سیستم‌های دریاچه‌ای باز با شوری پایین، رایج‌ترین کانی ته نشست شده، کلسیت LMC می‌باشد. حضور سایرکربنات‌های کلسیم بستگی به نسبت mg/ca دارد. دولومیت زمانی نه نشست می‌شود که نسبت mg/ca بین ۱۲-۷ است. آراگونیت با نسبت mg/ca بیش از ۱۲ ته‌نشست می‌یابد.
در سیستم‌های از نظر هیدرولوژیکی بسته، آب دریاچه از نظر میزان یونها غلیظ‌تر و شورتر می‌شود. در نهایت ترکیب شورابه‌ها و نهشته‌های آن بستگی به طبیعت سنگ بستر حوضه دریاچه و نوع هوازدگی دارد. سنگ بستر هرچه باشد، با اشباع شدن آب دریاچه، اولین نهشته‌ها، کربناته‌های قلیایی خاکی، کلسیت و آراگونیت‌اند. ماهیت نهشته‌ها بستگی به نسبت mg/ca دارد و ته‌نشینی کربنات‌های mg,caدار تکامل بعدی شورابه‌ها را تحت تأثیر قرار می‌دهد.

Na فراوان‌ترین کاتیون در دریاچه‌های شور است. با تخلیه شدن mg, ca بعد از آن کربنات سدیم ته‌نشین می‌شود. کانی‌هایی مثل ترونا، ناکرولیت و ناترونیت تشکیل خواهند شد، در این صورت شورابه‌ها آلکالین هستند. این قبیل کانی‌های سدیم‌دار منحصر به محیط‌های غیر دریایی هستند. اگر آب‌های اولیه حاوی mg, ca خیلی بیشتر از Hco3 باشند، بعد از رسوبگذاری اولیه، شورابه‌ها غنی از قلیایی خاکی می‌شوند ولی از Co-23 و Hco-3 تخلیه می‌شوند. اگر نسبت Hco-3/ca,mg کم باشد، کربنات کمی می‌تواند ته‌نشین شود. و منجر به تشکیل سولفات‌ها (ژیپس) می‌شود. اگر نسبت Hco-3/ca,mg حدود ۱ باشد، ته‌نشینی کربنات‌ها می‌تواند گسترده باشد: ابتدا ca خارج و منجر به افزایش نسبت mg/ca می‌شود تا اینکه کلیت HMC، دولومیت و حتی منیزیت ته‌نشین شوند.

ته‌نشست‌های آب‌های شور می‌توانند در ۴ موقعیت نهشته شوند: ۱ـ در دریاچه‌های شور دائمی که نهشته‌ها در کف بستر دریاچه رسوب می‌کنند. ۲ـ در تشک‌های نمکی موقت ۳ـ به صورت قشرهای رشدی روی لبه‌های اجسام نمکی. ۴ـ به صورت رشد جایگزینی (displasive) در پهنه‌های گلی شود.
کربنات‌های آهن‌دار در دریاچه‌های قدیمه فراوان هستند اما ظاهراً در دریاچه‌های عهد حاضر کمتر دیده شده است. مهم‌ترین کانی‌های این دسته سیدریت و آنکریت هستند. سیدریت‌های منیزیم‌دار و کربنات‌های mmدار نیز از ته نشست‌های دریاچه‌ای گزارش شده‌اند. برای ته‌نشست سیدریت، غلظت پایین سولفید و Co+2 لازم است و اگر این شرایط فراهم نباشد، Fe2+ وارد شبکه پیریت می‌شود و Ca2+ و Co3-2 تشکیل کربنات کلسیم می‌دهند. توضیح مفصل‌تر دیگر کانی‌های کربناته در نوشته‌های دین و فوک (Dean & Fouch, 1983) یافت می‌شود.

۳-۳- فرایندهای بیولوژیکی:
تأثیر بایوتا (Biota) بر روی رسوبات دریاچه حتی مهم‌تر از کربنات‌های محیط‌های دریایی است. به ویژه گیاهان از طریق بیولوژیکی، کلیتی شدن و القاء ته‌نشینی را کنترل می‌کنند. علاوه بر این آنها مواد ارگانیکی لازم برای تشکیل سنگ نشأ مواد هیدروکربنی را فراهم می‌کنند. بقایای کاروفیتا در بسیاری از رسوبات دریاچه‌ای هم به صورت ساختارهای تولید مثلی و هم به صورت قشرهای ساقه مانند گیاه وجود دارند. اندام تولید مثلی ماده یعنی تخمدان دارای یک پوشش کلیتی بیرونی به نام ژیرو گونیت است. جنس این پوشش از کلیت LMC است ولی در دریاچه‌های باشوری بالا کلیت HMC می‌باشد، (Burne et al., 1980). کاروفیتا بیشتر بستر گلی را ترجیح می‌دهد و در بسترهای دانه درشت و تحت تأثیری موج کمتر دیده می‌شود. کاروفیتاها به همراه علف‌های دریایی گل‌ها را به دام می‌اندازند و نیز مقدار قابل توجهی کربنات تولید می‌کنند. دین (Dean, 1981) میزان تولید کاروفیتاها را چندصد گرم در m2 در سال، کربنات دانه‌ریز محاسبه کرده است. کاروفیتا معمولاً بسته به میزان انرژی در اعماق ۱۰-۱۵m یافت می‌شود.

برن و دیگران (Burne et al., 1980) نقل کرده‌اند که کاروفیتا در سنگ‌های رسوبی به عنوان شاهد خوبی از محیط‌های آب شیرین می‌باشد، ولی برخی از فرم‌های زنده در محیط‌های لب شور می‌توانند زنده، بمانند.

میکروفلورا نقش کلیدی در ته‌نشست بیوژنیک کربنات کلسیم دارند. گیاهان و مواد ارگانیکی می‌توانند تجمع یابند و تشکیل پیت یا رسوبات غنیاز مواد ارگانیکی را دهند. لایه‌های غنی از sapropel می‌توانند در زون‌های عمیق گسترش یابند. در دریاچه‌های کم عمق الکالن ـ شور توده‌های میکروبی بنتیک و پلانکتونیک بسیار متداول است و غالباً سطح تولید بالایی دارند و می‌توانند پتانسیل تشکیل سنگ منشأ مواد هیدروکربنی را داشته باشند.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
word قابل ویرایش - قیمت 9700 تومان در 46 صفحه
97,000 ریال – خرید و دانلود
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد