بخشی از پاورپوینت
اسلاید 1 :
الکترونیک دیجیتال اجزای مدارات دیجیتال- ترانزیستور
اسلاید 2 :
مقدمه
ترانزیستورهای MOS بدلیل اینکه میتوان تعداد زیادی از آنها را در یک مدار مجتمع جاداد و همچنین بدلیل سهوات نسبی قرایند ساخت آنها بصورت گسترده ای در مدارات دیجیتال مورد استفاده هستند.
امروزه میتوان ده ها میلیارد ترانزیستور را در یک مدار مجتمع نمود.
اسلاید 3 :
ترانزیستور MOS
نواحی سورس و درین با ایجاد دو نیمه هادی نوع n با دوپینگ بالا از طریق فرایندهای نفوز و یا کاشت یونی در داخل یک نیمه هادی پایه p که بدنه نامیده میشود بوجود می آیند.
یک لایه نازک Sio2 ( تقریبا 50 آنگستروم) برروی ناحیه کشیده میشود که اکسید گیت نامیده میشود.
لایه ای از یک ماده رسانا نظیر پلی سیلیکون بر روی اکسید گیت کشیده میشود.
ترانزیستورهای MOS با استفاده از اکسید ضخیم SIO2 و دیودهای معکوس pn+ از همدیگر جدا میشوند.
اسلاید 4 :
Cross-Section of CMOS Technology
اسلاید 5 :
Threshold Voltage: Concept
اسلاید 6 :
مقدمه
در فصل قبل دیود که المانی دو ترمینالی بود را بررسی کردیم. در این فصل و فصل بعدی المانی سه ترمینالی که ترانزیستور نامیده میشود را بررسی خواهیم کرد.
ترانزیستور در مدارات زیادی از جمله تقویت کننده ها، مدارات دیجیتال و حافظه ها کاربرد دارد.
اصول کلی کارکرد ترانزیستور بر این پایه است که با اعمال ولتاژ به دو ترمینال جریان ترمینال سوم را کنترل میکنند.
دو نوع ترانزیستور مهم وجود دارد: MOSFET, BJT
MOSFET ازBJT کوچکتر بوده و ساخت آن ساده تر بوده و توان کمتری مصرف میکند. در ساخت بسیاری از مدارات مجتمع کاربرد دارد.
اسلاید 7 :
Metal Oxide Semiconductor Field Effect Transistor
این ترانزیستور بر روی یک پایه از نوع p ساخته میشود. بر روی پایه دو ناحیه با نیمه هادی نوع n که دارای ناخالصی زیادی هستند ایجاد میشود. این نواحی سورس و درین نامیده میشوند که با یک اتصال فلزی دردسترس قرار میگیرند.
بین این دو ناحیه و در سطح پایه عایقی از جنس شیشه کشیده میشود. برروی این عایق یک لایه فلز قرار داده میشود که اتصالی با نام گیت بوجود می آورد.
ممکن است پایه نیز به یک اتصال فلزی وصل شود.
اسلاید 8 :
نحوه عملکرد
این ترانزیستور بصورت یک المان با سه ترمینال Source, Drain , Gate مورد استفاده قرارمیگیرد.
اگر ولتاژی به گیت وصل نشده باشد بین سورس و درین دو دیود وجود خواهند داشت: یکی بین n سورس و p پایه و دیگری بین p پایه و n درین.
چون این دو دیود پشت به پشت به هم وصل شده اند هیچ جریانی بین سورس و درین نمیتواند برقرارشود.
مقاومت بین سورس و درین خیلی زیاد خواهد بود.
در واقع یک ناحیه تخلیه بین دو قطعه p,n مجاور تشکیل میشود که از عبور جریان بین پایه و درین و همچنین پایه و سورس جلوگیری میکند.
اسلاید 9 :
ایجاد کانالی برای عبور جریان
اگر درین و سورس را به زمین وصل کرده و ولتاژ مثبتی به گیت وصل کنیم، ناقلهای مثبت زیر ناحیه گیت تحت تاثیر این ولتاژ از زیر گیت دور شده و به سمت substrate رانده میشوند.
این ولتاژ متقابلا الکترونهای منفی را از ناحیه های سورس و درین جذب مینماید. اگر در ناحیه زیر گیت الکترون کافی جمع شود یک ناحیه منفی بوجود می آید که دو ناحیه n مربوط به سورس و درین را به هم وصل میکند. در واقع کانالی برای عبور جریان الکترون از سورس به درین تشکیل میشود.
توجه شود که substrate که قبلا از نوع p بود در ناحیه زیر گیت به نوع n تبدیل میشود (inversion layer)
اسلاید 10 :
ترانزیستور NMOS
ترانزیستوری که کانال آن از نوع n باشد، n-channel و یا NMOS خوانده میشود.
مقدار VGS لازم برای تشکیل کانال باید از یک مقدار آستانه Vt بیشتر باشد. این مقدار معمولا بین 0.5 , 1 ولت است.
درناحیه گیت در اثر جمع شدن بار منفی در زیر گیت و اتصال آن به ولتاژ مثبت در بالای گیت، خازنی بوجود میآید.
مقدار جریانی که از کانال میگذرد بستگی به میدان الکتریکی تشکیل شده در ناحیه گیت دارد.
توجه شود که ترانزیستور از لحاظ ساخت متقارن است لذا نامگذاری درین و سورس بستگی به ولتاژی دارد که به آنها اعمال میشود: برای ترانزیستور با کانال n درین به ولتاژ بالاتری نسبت به سورس وصل میشود.
اسلاید 11 :
اعمال ولتاژی کوچک به درین و سورس
اگر ولتاژ کوچکی به درین و سورس اعمال شود (Vds) باعث خواهد شد تا جریان id در کانال عبورکند.
درواقع این ولتاژ باعث جذب الکترونها از سمت سورس به درین شده و جریانی در خلاف جهت حرکت الکترون بوجود می آورد.
مقدار این جریان بستگی به مقدار الکترونهای آزادی ناحیه زیر گیت دارد که خود آن وابسته به ولتاژ VGs-Vt دارد.
اگر VGS در حد vt باشد کانال تازه تاسیس هنوز کوچک بوده و جریان زیادی از ان عبور نمیکند. اما با زیاد شدن این ولتاژ عرض کانال هم زیاد شده و امکان عبور جریان بیشتر فراهم خواهد شد.
اسلاید 12 :
رابطه جریان و ولتاژ
مقدار جریانی که از کانال میگذرد هم به ولتاژ Vgs-Vt و هم به ولتاژ Vds بستگی خواهد داشت.
درواقع ترانزیستور بصورت یک مقاومت خطی عمل میکند که مقدار آن به ولتاژ VGS بستگی دارد.
اگر VGS از Vt کمتر باشد مقاومت بی نهایت بوده و جریانی عبور نخواهد کرد. با زیاد شدن VGS مقدار مقاومت نیز کمتر میشود.
توجه شود که مقدار جریانی که به ترمینال درین وارد میشود برابر با جریانی است که از سورس خارج میشود و جریان ترمینال گین برابر با صفر است.
اسلاید 13 :
افزایش ولتاژ VDS
اگر ولتاژ درین و سورس را از مقدار 0 به سمت VDS افزایش دهیم ولتاژی که روی کانال می افتد در سمتی که کانال به درین وصل میشود به اندازه VGS- VDS کاهش پیدا میکند در نتیجه عرض کانال در این قسمت کاهش می یابد زیرا مقدار آن به ولتاژی که در ناحیه زیر کانال اعمال میشود بستگی دارد. بدین ترتیب شکل کانال دیگر متقارن نخواهد بود.
اسلاید 14 :
اشباع ترانزیستور
با افزایش بیشتر ولتاژVDS مقدار مقاومت کانال نیز بیشتر شده و در نتیجه منحنی iD-vDS دیگر بصورت یک خط راست نخواهد بود.
اگر ولتاژ تا مقدار VDSsat = vGS − Vt افزایش پیدا کند کانال در محل اتصال به درین فشرده شود. افزایش بیشتر VDS تاثیری در جریان نخواهد گذاشت و جریان در حد اشباع باقی خواهد ماند.
نواحی کار ترانزیستور بصورت زیر نامگذاری شده است:
Triode region: VDS < VDSsat
Saturation region: VDS ≥ VDSsat
Figure 4.6 The drain current iD versus the drain-to-source voltage vDS for an enhancement-type NMOS transistor operated with vGS > Vt.
Figure 4.7 Increasing vDS causes the channel to acquire a tapered shape. Eventually, as vDS reaches vGS – Vt’ the channel is pinched off at the drain end. Increasing vDS above vGS – Vt has little effect (theoretically, no effect) on the channel’s shape.
اسلاید 15 :
بدست آوردن رابطه جریان و ولتاژ ترانزیستور MOSFET
اگر فرض شود که vGS > Vt تا کانال ایجاد شده باشد، همچنین با فرضvDS < vGS − Vt t برای اینکه در ناحیه triode باشیم.
Figure 4.8 Derivation of the iD–vDS characteristic of the NMOS transistor.
اسلاید 16 :
جریان در ناحیه تریود
برای خازنی که در ناحیه گیت تشکیل میشود داریم:
بعلت نایکنواختی کانال ایجاد شده ظرفیت خازنی ناحیه کانال متغییر خواهد بود. اگر یک المان جزئی از سطح زیر گیت که در فاصله x قرار دارد را در نظر بگیریم ظرفیت خازن این ناحیه برابر است با:
که بار الکتریکی ذخیره شده در آن با ولتاژ اعمالی به کانال در این نقطه ربط خواهد داشت.
از طرفی ولتاژ VDS میدانی ایجاد میکند که برابر است با
ظرفیت خازنی بازای واحد مساحت ناحیه گیت
اسلاید 17 :
جریان در ناحیه تریود
این میدان باعث میشود تا بار الکتریکی جمع شده در زیر ناحیه گیت با سرعت زیر به حرکت در آید:
جریان رانش حاصل برابر است با:
با جایگذاری مقادیر خواهیم داشت:
اگر چه این جریان برای یک نقطه بدست آمد اما باید برابر با جریانی باشد که از سورس به درین وجود دارد. لذا جریان درین به سورس برابر است با:
با جابجائی و انتگرال گیری داریم:
اسلاید 18 :
جریان در ناحیه اشباع
مقدار جریان در ابتدای ناحیه اشباع با مقدار جریان در انتهای ناحیه تریود برابر خواهد بود. لذا با جایگزین کردن
خواهیم داشت:
در روابط فوق مقدار ثابت بوده و به تکنولوژی ساخت نیمه هادی برمیگردد. از اینرو میتوان آنرا با مقداری ثابت جایگزین نمود.
در نتیجه رابطه جریان برابر است با:
اسلاید 19 :
تکنولوژی زیر میکرونی(Sub Micron)
مشاهده میشود که مقدار جریان به نسبت طول به عرض کانال بستگی دارد.
مقدار L توسط سازنده انتخاب میشود تا ترانزیستور برای جریان دلخواه قابل استفاده باشد. از آنجائیکه ساخت تراتزیستور کوچک یک امتیاز محسوب میشود سعی میشود تا با کوچک کردن L به ترانزیستور کوچکتری رسید که در حال حاضر به علت محدودیت ساخت نمیتوان آنرا از کوچکتر کرد. این مقدار را حد تکنولوژی تعیین میکند.
اسلاید 20 :
ترانزیستور MOSFET با کانال p (PMOS)
یک ترانزیستور کانال p بر روی یک پایه n ساخته میشود و نواحی مثبت و منفی با استفاده از ناخالصی p+ بوجود می آیند در نتیجه حفره ها ناقل جریان خواهند بود.
طرز کار آن شبیه ترانزیستور n کانال است با این تفاوت که VGSو VDS و Vt همگی منفی هستند.
امروزه NMOS بدلیل کوچکی، سرعت بیشتر و مصرف توان کمتر بیشتر از PMOS مورد استفاده هستند.