بخشی از مقاله

سنسورهايي از نوع ذرات بيولوژيک
در سالهاي اخير كاربردهاي زيست‌ فناوري و پزشكي فناوري ميكرو ونانو (كه معمولا از آن به عنوان سيستم‌هاي ميكروي الكتريكي مكانيكي پزشكي يا زيست‌ فناوري‎(BioMEM) 1‏ نام برده مي‌شود) به‌صورت فزاينده‌اي رايج شده است و كاربردهاي وسيعي همچون تشخيص و درمان بيماري و مهندسي بافت پيدا كرده است. در حين اين كه تحقيقات و گسترش فعاليت در اين زمينه هم چنان به قوت خود باقي است، بعضي از اين كاربردها تجاري هم مي‌شود. در اين مقاله پيشرفت‌هاي اخير در اين زمينه را مرور كرده و خلاصه‌اي از جديدترين مطالب در حوزه ‏BioMEM ‎‏ را با تمركز روي تشخيص و حسگرها ارائه مي‌شود.‏
بيوسنسور‌ها
در كاربردهاي بسياري در پزشكي، تحليل محيطي و صنايع شيميائي نياز به روشهايي جهت حس كردن مولكولهاي زيستي كوچك وجود دارد. حس‌هاي بويايي و چشايي ما دقيقا همين كار را انجام مي‌دهد و سيستم ايمني بدن ميليونها نوع مولكول مختلف را شناسائي مي‌كند. شناسائي مولكولهاي كوچك تخصص بيومولكولها است، لذا اينها شيوه جديد و جذابي براي ساخت سنسورهاي خاص را پيش رو قرار مي‌دهد. دو مولفه اساسي در اين راستا وجود دارد. المان شناساگر و روش‌هايي براي فراخواني زماني كه المان شناساگر هدف خودش را پيدا مي‌كند. اغلب المان شناساگر تحت تاثير منبع زيست‌ فناوري تغيير نمي كند. مشكل اصلي در اين كار طراحي يك واسطه مناسب به يك وسيله بازخواني بزرگ است.


از آنتي بادي‌ها به صورت گسترده به عنوان بيوسنسور استفاده مي‌شود. آنتي بادي‌ها بيوسنسورهاي پيشتاز در طبيعت است، به همين دليل توسعه تستهاي تشخيصي با استفاده از آنتي باديها، يكي از زمينه‌هاي بسيار موفق در بيوفناوري است. شايد آشناترين مثال تست ساده‌اي است كه براي تعيين گروه خوني استفاده مي‌شود.


بوسنسورهاي گلوكز از موفق ترين بيوسنسورهاي موجود در بازار است. بيماران مبتلا به ديابت نياز به شيوه‌هاي مرسوم جهت پايش سطح گلوكز خود دارد. سنسورهاي قابل كاشت و غير تهاجمي در حال توسعه است، اما در حال حاضر در دسترس‌ترين شيوه بيوسنسور دستي است كه يك قطره از خون را تحليل مي‌كند.


تعريف ‏BioMEM
‏ از زمان آغاز سيستم‌هاي ‏MEM‏ در اوايل دهه 1970، اهميت كاربردهاي پزشكي اين سيستم‌هاي مينياتوري درك شد. ‏BioMEM‏‌ها در حال حاضر يك موضوع بسيار مهم است كه تحقيقات بسياري در زمينه آن انجام شده است و كاربردهاي پزشكي مهم بسياري دارد. در حالت كلي مي‌توان ‏BioMEM‏‌ها را به عنوان "دستگاه‌ها ( وسايل) يا سيستم‌هايي ساخته شده با روش‌‌هاي الهام گرفته شده از ساخت در ابعاد ميكرو /نانو، كه براي پردازش، تحويل 2، دستكاري3، تحليل يا ساخت ذرات 4 شيميائي و بيولوژيك استفاده مي‌شود"، تعريف كرد. اين وسايل و سيستم‌ها همه واسطه‌هاي علوم زندگي و ضوابط پزشكي با سيستم‌هاي با ابعاد ميكرو و نانو را شامل مي‌شود. حوزه‌هاي تحقيقات و كاربردها در ‏BioMEM‏ از تشخيص بيماري‌ها مانند ميكرو آرايه‌هاي پروتئيني و‏DNA، تا مواد جديدي براي ‏BioMEM، مهندسي بافت، تغيير و اصلاح5 سطح، ‏BioMEM‏‌هاي قابل كاشت، سيستم‌هائي براي رهايش دارو و.... را شامل مي‌شوند. وسايل و

سيستم‌هاي فشرده‌ايي كه از ‏BioMEM‏‌ها استفاده مي‌كنند، به عنوان "آزمايشگاه روي يك چيپ"6 و سيستم‌هاي تحليل تمام ميكرو‏TAS ) ‎‏ ‏‎µ‎‏ يا ‏‎(micro-TAS ‎‏ 7 نيز شناخته مي‌شود. شماتيك رسم شده از قسمت‌هاي كليدي حوزه‌هاي تحقيقاتي را نشان مي‌دهد.‏

اصول مورد استفاده
BioMEM ‎‏ و وسايل مربوط مي‌تواند با سه دسته از مواد ساخته شود كه مي‌توان آنها را به‌صورت زير طبقه‌بندي كرد:
1- ميكرو الكترونيك و MEM‏‌ها، ‏
2- مواد پلاستيكي و پليمري مانند Poly dimethylsiloxane (PDMS)‎‏ و ... و ‏
‏3- مواد و ذرات بيولوژيك مانند پروتئين‌ها، سلولها و بافتها، ... .‏
روي مواد گروه اول به صورت گسترده هم از ديدگاه تحقيقاتي و هم از نقطه نظر كاربرد گزارش داده شده است و به صورت متداول و رايج در وسايل و دستگاهها و ‏MEM‏‌ها استفاده قرار گرفته است. پردازش سيگنالهاي ‏BioMEM‏ با استفاده از روش‌هاي پليمري و ليتوگرافي نرم 8 به خاطر سازگار پذيري زيستي زياد و ساخت آسان ، كم هزينه و پيش نمونه سازي سريع9 كه در مورد مواد لاستيكي موجود است، بسيار جذاب است. استفاده از اين مواد براي كاربردهاي عملي به صورت مداوم در حال افزايش است. مواد مربوط به گروه سوم تقريبا بررسي نشده است. اما امكانات جديد و جالب بسياري را ارائه مي‌كند و مرز10جديدي ميان

‏BioMEM‏ و بيو نانو فناوري به وجود خواهد آورد. براي مثال در مهندسي بافت و سلول كه از فناوري ميكرو و نانو الهام گرفته شده است و نيز براي توسعه ابزار و وسايلي براي فهم اعمال و توابع سلولها و بيولوژي سيستم‌ها، استفاده از روش‌‌هاي ساخت ميكرو و نانو براي سنتز و ساخت مستقيم ساختار‌هاي زيست‌ فناوري مانند اندام مصنوعي و وسايل هيبريد11، طيف وسيعي از امكانات و فرصت‌ها را ارائه مي‌كند. كاربردهايي مانند توسعه آرايه‌هاي بر پايه سلول 12،

مهندسي بافت و توسعه اندام‌هاي مصنوعي با استفاده از روش‌هاي ساخت در ابعاد ميكرو ونانو، تنها شماري از امكانات بسيار وسيع و مهيج آن است.‏

BioMEM‏ و كاربردهاي تشخيصي
تشخيص بزرگترين و كار شده‌ترين حوزه در ‏BioMEM‏ را تشكيل مي‌دهد. تعداد زياد و فزاينده اي از وسايل ‏BioMEM‏ براي كاربردهاي تشخيصي توسعه يافته است و در طي چند سال اخير به وسيله گروههاي زيادي در مقالات ارائه شده است. روش‌‌هاي طراحي و ساخت اين دستگاهها و نيز حوزه‌هاي كاربردي آنها به صورت قابل ملاحظه اي متفاوت است. به ‏BioMEM‏ براي كاربردهاي تشخيصي گاهي ‏Biochip‏ هم گفته مي‌شود. اين دستگاهها براي تشخيص سلولها، ميكرو ارگانيزمها، ويروس‌ها، پروتئين‌ها،DNA‏ و اسيد نوكلئيك‌هاي مربوطه و مولكول‌هاي كوچك كه از نظر بيوشيميائي مهم است، استفاده مي‌شود.‏

 

‏ ‏BioMEM‏ و سنسورهاي بيوچيپ‏
‏ بيوسنسورها وسايل تحليلي13 است كه يك المان حساس از نظر بيولوژيك را با يك ترانسديوسر فيزيكي يا شيميائي تركيب مي‌كند تا به صورت كمي و انتخابي وجود يك تركيب خاص در يك محيط خارجي داده شده را تشخيص دهد. در طي دهه گذشته، ‏BioMEM‏ به عنوان بيوسنسورها استفاده شد است وبيوچيپ‌هاي حاصل امكان اندازه‌گيري‌هاي سريع، حساس و زمان حقيقي را فراهم مي‌كند. اين سنسورهاي ‏BioMEM‏ مي‌تواند جهت تشخيص سلولها، پروتئينها،‏DNA‏ يا مولكولهاي كوچك مورد استفاده قرار گيرد. بسياري از داده‌هاي ارائه شده تا امروز مربوط به يك سنسور است و اين سنسورها را مي‌توان به فرمت آرايه اي مجتمع نمود. تعداد زيادي روش تشخيصي در بيوچيپ‌ها و سنسورهاي ‏BioMEM‏ استفاده مي‌شوند، شامل : 1- مكانيكي 2- الكتريكي 3- نوري... شماتيك شرايط كليدي تشخيص را كه در سنسور‌هاي ‏BioMEM‏ و بيوچيپ‌ها استفاده مي‌شوند، را نشان مي‌دهد.

 

‏BioMEM ‎‏ و تشخيص مكانيكي‏
اخيرا از سنسورهاي كانتيلور14 با ابعاد نانو و ميكرو روي يك چيپ براي تشخيص مكانيكي واكنش‌ها و ذرات بيوشيميائي استفاده شده است. همان طور كه در نشان داده شده است، اين سنسورها ( كه ساختار شبيه تخته پرش شنا دارند) را مي‌توان در دو مود به نا مهاي مود سنس فشار و حالت اندازه‌گيري جرم، استفاده كرد. در مود اندازه‌گيري فشار، فعل و انفعال بيوشيميائي به صورت انتخابي روي يك طرف سنسور انجام مي‌شود. تغيير در انرژي آزاد سطح15 باعث تغيير درفشار سطح مي‌شود، كه يك خمش قابل اندازه گيري در سنسور ايجاد مي‌كند. بنابراين تشخيص بدون برچسب16 تركيب بيومولكولي، ممكن مي‌شود. سپس خمش سنسور را مي‌توان به روش نوري ( انعكاس ليزر از سطح سنسور داخل يك دتكتور موقعيت، همانند در يك ‏AFM‏ ) يا به روش الكتريكي( مقاومت پيزو كه در لبه ثابت سنسور قرار داده مي‌شود) اندازه گيري نمود.
يكي از مزاياي اصلي اين سنسورها، توانائي آنها براي تشخيص تركيبات داراي فعل و انفعال داخلي بدون نياز به افزودن برچسب قابل تشخيص به صورت نوري روي ذرات تركيب شونده، است. در سالهاي اخير پيشرفتهاي چشمگير و جالبي در تشخيص بيوشيميائي با استفاده از سنسورهاي كانتيلور رخ داده است.

تشخيص بدون برچسب و مستقيم ‏DNA‏ و پروتئين‌ها به وسيله كانتيلور سيليكوني انجام شده است. هيبريديزاسيون ‏DNA‏ و تشخيص ‏single based mismatch‏ روي لايه‌هاي به‌هم بافته ‏DNA‏ به‌وسيله كانتيلورهائي با يك لايه نازك طلا روي يك سمت آنها، انجام شده است. لايه‌هاي به‌هم بافته ‏DNA، به لايه طلا متصل مي‌شود و زماني كه لايه‌هاي بهم بافته هدف با لايه‌هاي بهم بافته گيرنده تركيب مي‌شوند، خمش كانتيلورها قابل تشخيص است. اين سنسورها را همچنين

مي‌توان جهت تشخيص پروتئين‌ها و ماركرهاي سرطان مانند آنتي ژن‌هاي خاص پروستات ( ماده اي كه در سلولهاي مخاطي پروستات پنهان شده است و اغلب براي تشخيص سرطان پروستات تست مي‌شود) استفاده نمود كه در شرايط مناسب باليني، در پس زمينه آلبومين سرم انسان در حد ‏ng/ml‏2/0 تشخيص داده شده است.

BioMEM ‎‏ و تشخيص الكتريكي
‏ تكنيك‌هاي تشخيص الكتريكي و الكتروشيميايي تقريبا به صورت معمول و مرسوم در بيوچيپ‌ها و سنسورهاي ‏BioMEM ‎‏ هم مورد استفاده قرار گرفته است. اين روش‌ها وقتي با روش‌هاي تشخيص نوري مقايسه مي‌شود، مي‌تواند قابليت‌هائي نظير انتقال‌پذير بودن و مينياتورسازي را از خود ارائه كند. اگر چه، در

پيشرفتهاي اخير در مجتمع سازي مولفه‌هاي نوري روي يك چيپ نيز مي‌تواند وسايل مجتمع كوچكتري توليد كند. بيوسنسورهاي الكتروشيميائي سه نوع پايه را شامل مي‌شوند1- بيوسنسورهاي آمپرومتريك كه جريان الكتريكي مربوط به الكترونهاي درگير در فرآيندهاي اكسايش را شامل مي‌شود. 2- بيوسنسورهاي پتانسيومتري كه تغيير پتانسيل در الكترودها به خاطر يونها يا واكنش‌هاي شيميائي در يك الكترود را اندازه مي‌گيرد.3- بيوسنسورهاي هدايت‌سنج17 كه تغييرا

ت هدايت وابسته با تغيير در كل محيط يوني بين دو الكترود را اندازه مي‌گيرد. گزارش‌هاي بيشتري روي سنسورهاي آمپرومتريك و پتانسيومتريك به ويژه به خاطر زمينه قاطع و مسلم و ثابت الكترو شيمي گزارش شده است و بسياري از اين سنسورها در مقياسهاي ميكرو و نانو استفاده شده‌اند. مرسومترين نمونه‌هاي بيوسنسورها ي آمپرومتريك از يك واكنش اكسايش ( كاهش) كه آنزيم كاتاليزور آن است،18 استفاده مي‌كنند. ‏


سنسورهاي پتانسيومتريك از اندازه گيري پتانسيل در يك الكترود مرجع نسبت به الكترود ديگر استفاده مي‌كند. متداولترين فرم سنسورهاي پتانسيومتريك ترانزيستورهاي اثر ميداني حساس به يون ‏‎(ISFET)‎‏ يا ترانزيستورهاي اثرميداني شيميائي ‏‎(Chem-FET) ‎‏ است. اين وسايل به عنوان سنسورهاي ‏Ph‏ به صورت تجاري موجود و نمونه‌هاي زيادي از آنها ذكر شده است.


سنسورهاي پتانسيومتريك با يونو فورز انتخاب كننده يون در ‏PVC‏ 19اصلاح شده، براي تشخيص آناليت‌هاي سرم انسان استفاده شده است. تنفس سلولي و اسيد سازي ناشي از فعاليت سلولها به وسيله ‏ISFET‏‌هاي ‏CMOS‏ اندازه گيري شده است. سنسور پتانسيومتريك با قابليت آدرس دهي نوري ‏LAPS‏ براي تشخيص تغيير در غلظت يون هيدروژن و بنابراين ‏Ph‏ با استفاده از يك وسيله اثر ميداني در سيليكون در حضور نور، استفاده شده است. سنسورهاي پتانسيومتريك با استفاده از سيم‌هاي سيليكوني نانو و نانو تيوب‌هاي كربن به عنوان سنسورهاي اثر ميداني، به مقياس نانو كاهش بعد داده است، براي رسيدن به اين مزيت: بالا بردن حساسيت به خاطر نسبت سطح به حجم بالاتر.


جمع كردن اين سنسورهاي با ابعاد نانو در آزمايشگاه روي چيپ‌ها مشكلتر است. اما پيشرفتهاي اخير در روش‌هاي توليد از بالا به پايين 20 براي ارائه اينگونه ساختارهاي با ابعاد نانو استفاده شده‌اند. سنسورهاي پتانسيومتريك در مقياس ميكرو نيز براي انجام تشخيص بدون برچسب هيبريديزاسيون ‏DNA‏ استفاده شده است. اين سنسورها به نحوي در داخل كانتيلورها جاداده شده است كه مي‌توان از آنها داخل كانالهاي ميكرو سيال استفاده نمود. هيبريديزاسيون ‏DNA‏ از طريق اندازه گيري اثر ميداني در سيليكون با بار ذاتي مولكولي روي ‏DNA، با استفاده از يك بافر ‏Poly-L-lysine‏ بعدا تشخيص داده شد.


سنسورهاي هدايت سنج، تغييرات در امپدانس الكتريكي بين دو الكترود را اندازه مي‌گيرد كه اين تغييرات مي‌تواند در يك واسطه يا در فضاي حجيم21 باشد و مي‌تواند براي تشخيص واكنش و فعل و انفعال بيومولكولي بين ‏DNA، پروتئين‌ها و فعل و انفعال آنتي‌ژن/ آنتي‌بادي يا دفع محصولات متابوليك سلولي استفاده شود. وسايل با ساختار ميكرو22 براي اندازه‌گيري فعاليت نوروني خارج سلولي براي يك مدت طولاني استفاده شده‌ است. روش‌هاي هدايت به خاطر سادگي و سهولت استفاده‌شان جذاب هستند. از آنجا كه يك الكترود مرجع ويژه نياز نيست و براي تشخيص رنج وسيعي از ذرات مانند عوامل ‏biothreat‏ ، مواد

بيوشيميائي، سموم و اسيد نوكلئيك‌ها استفاده شده‌اند. سنسورهاي هدايت‌سنج اطلاعات را روي قدرت 23 يوني در الكتروليتها تامين مي‌كند، اگر با غشاي آنزيمها كوپل شود، مي‌توانند خاصيت انتخابي داشته باشد. اين سنسورها براي تشخيص آناليت‌هاي متفاوت مورد استفاده قرار گرفته‌اند، براي مثال اوره، گلوكزو غيره.‏


سنسورهاي بر پايه سلول هم دسته مهمي از سنسورها است كه در سالهاي اخير بيشتر مورد توجه قرار گرفته است. استفاده از سلولها به عنوان سنسورها روش بسيار جذاب و جالبي براي ساختن دتكتورهاي بيوشيميائي حساس است. سلولهاي سالم با آنزيم‌ها، كانالها و گيرنده‌هاي بسيار حساس و انتخابي آنها، كانديداهاي بسيار جذابي جهت توسعه بيوسنسورها است. مزيت اصلي سلولها به عنوان بيوسنسورها اين است كه سلولها خاصيت انتخابي و ذاتي

طبيعي نسبت به مواد شيميائي فعال از نظر بيولوژيكي دارد و مي‌تواند در شرايطي كه از نظر فيزيولوژيك مناسب است، با آناليت‌ها واكنش دهد. تبديل سيگنالهاي سلول سنسور، مي‌تواند با اندازه‌گيري پتانسيل‌هاي سلولي و غشائي، تغييرات امپدانس، فعاليت متابوليك يا به صورت نوري با استفاده از فلورسانس يا لومينسانس به دست آيد. نورونها روي سطوح با ساختار ميكرو پرورش يافته و تغييرات در سيگنالهاي الكتريكي آنها ناشي از در معرض مواد شيميائي مضر و سموم قرار گرفتن، روي يك چيپ اندازه‌گيري شده است.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید