بخشی از مقاله
در حال حاضر الکترونیک کلید فتح شگفتیهای جهان است و با تمام علوم و فنون موجود به نحوی پیوند خورده است . از وسائل ساده خانگی تا پیچیده ترین تکنیک های فضایی همه جا صحبت از تکنولوژی فراگیر الکترونیکی است و امروز صنعت مدرن بدون الکترونیک و تکنولوژی های وابسته به آن عملا مطرود و از کار افتاده است
پیشرفت علم الکترونیک و وسعت حوزه عملکرد آن امروز بر همگان روشن است. علاوه بر وسائل الکترونیکی از جمله دستگاههای مخابراتی مثل رادیو ،تلویزیون ، ضبط صوت و تصویر ،انواع وسائل پزشکی ، صنعتی ،نظامی ، در دیگر وسائل غیر الکترونیکی هم ، کمتر وسیله ای را می توان یافت که الکترونیک در آن دخالتی نکرده باشد. از جمله در اتومبیل و صنایع حمل و نقل ، وسائل خانگی مثل ماشین لباسشوئی ،جاروبرقی و امثال آن نقش الکترونیک بسیار فعال و جالب توجه شده است.
با توجه به این مختصر می توان نتیجه گرفت که امروزه ، دیگر الکترونیک علم و یا تخصص ویژه افرا تحصیلکرده دانشگاهی و متخصصین این رشته نیست و بر همه افرادی که به نحوی با امور فنی درگیرند لازم است بفراخور حرفه خویش از این رشته اطلاعی داشته باشند.
مهندسان الکترونیک با خلق وعملکرد سیستمهای بسیار متنوعی سر وکار دارند که به منظور برآوردن نیازها و خواسته های جامعه طراحی می شوند. مهندسان الکترونیک در ایجاد ماشینهایی که تواناییهای بشر را در زمینه جسمی یاری و در زمینه محاسباتی افزایش می دهند نقش مهمی دارند . بخشی از طراحی و ایجاد سیستمهای الکترونیکی به توانایی ساخت مدلهای ریاضی اجزا و مدارهای الکتریکی بستگی دارد .برخی از مباحث پایه الکترونیک عبارتند از :
مدار های الکتریکی:
• المان های الکتریکی
1. مقاومت
2. خازن
3. سلف
4. ترانسفورماتور
5. دیود
6. ترانزیستور
7. IC
8. تقویت کننده های عملیاتی
9. مبدلها
مقاومت الکتریکی
تقریبا تمام مدارهای الکترونیکی برای عملکرد صحیح به مقاومت احتیاج دارند. مقاومتها امکان کنترل جریان و یا ولتاژ ارائه شده را فراهم می کنند. به عبارت دیگر می توان گفت قطعه مقاومت، قطعهای است که در موارد مختلفی از قبیل محدود کردن ولتاژ و جریان و همچنین تقسیم ولتاژ و جریان استفاده میشود. ساختار مقاومت مورد استفاده در تعیین مشخصههای الکتریکی آن مفید واقع میشود. در هر مداری باید موارد زیر را برای مقاومت ها مد نظر داشت:
1. مقدار مقاومت
2. توان قابل تحمل
3. تلرانس
4. ضریب حرارتی
5. ایجاد نویز
6. پایداری
زمانی که جریان الکتریکی از داخل یک رسانا عبور میکند با مقاومتی مواجه میشود. رابطه مقاومت با جریان و ولتاژ از طریق قانون اهم بیان میشودکه یک رابطهٔ خطی است : V = RI
R : مقاومت بر حسب اهم . V : ولتاژ بر حسب ولت . I : جریان عبوری بر حسب آمپر .
البته باید توجه داشت که مقاومت وابسته به مدار نیست و فقط به جنس و شکل ماده بستگی دارد. قانون اهم را قانون مداری مقاومت میخوانند اما رابطه فیزیکی مقاومت به شکل زیر است:
R=ρl/A
که ρ مقاومت ویژه ماده، l، طول رسانا و A، سطح مقطع آن است.
سلف
سیم پیچ
سیم پیچ به طور ساده یک سیم هادی معمولی است که پیچانده شده است . مقاومت اهمی سیم پیچ را در اغلب موارد می توان صفر فرض نمود و بنابر این با عبور جریان dc سیم پیچ مانند یک هادی عمل کرده و عکس العملی ندارد . (ولتاژ دو سر آن صفر است) اما چنانچه جریان عبوری بخواهد تغییر نماید . سیم پیچ با تغییر جریان مخالفت نموده و این مخالفت به صورت ایجاد ولتاژی به نام ولتاژ القائی بروز نماید. و اصولاَ این خاصیت خودالقائی سیم پیچ می نامیم.
هرگاه از سیمی جریان عبور کند اطراف سیم میدان مغناطیسی ایجاد می شود . در سال 1824 دانشمندی به نام اورستد دریافت که هرگاه قطب نمائی به سیم حامل جریان نزدیک شود عقربه منحرف می شود . و اثبات این موضوع است که اطراف سیم حامل جریان میدان مغناطیسی وجود دارد . تجمع براده ها در نزدیکی سیم بیشتر بوده به این معنی که شدت میدان مغناطیسی ایجاد شده در نزدیکی سیم بیشتر است . و هر چه از سیم دورتر شویم میدان مغناطیسی ضعیف تر می شود.
عمل موتوری
در جلوی سیم حامل جریان میدان مغناطیسی جریان مزبور با میدان مغناطیسی دائم در خلاف جهت بوده و در پشت سیم میدان های مزبور هم جهت هستند بنابر این در پشت سیم یک میدان قوی و در جلوی سیم یک میدان ضعیف بوجود می آید . اختلاف شدت میدان در دو طرف سیم باعث می گردد تا بر سیم حامل جریان نیروئی به سمت بالا وارد شود
. امتداد نیروی مزبور عمود بر صفحه ای است که امتداد جریان و میدان مغناطیسی دائم بوجود می آورند و جهت آن در جهتی است که سیم را از میدان قوی تر به سمت میدان ضعیف تر حرکت دهد ، تا تعادل در دو طرف سیم برقرار گردد.پدیده مزبور اساس کار همه موتورهای الکتریکی است که انرژی الکتریکی را به انرژی مکانیکی تبدیل می نماید.
عمل ژنراتوری
عکس پدیده مزبور یعنی موتوری عمل ژنراتوری است . به همان ترتیبی که بر سیم حامل جریان در یک میدان مغناطیسی نیرو وارد می شود . چنانچه یک سیم هادی را در یک میدان مغناطیسی به نحوی حرکت دهیم که خطوط قوای مغناطیسی را قطع نماید تولید جریان می شود که به آن جریان القائی گویند.
شارژ و دشارژ
همانند خازن سیم پیچ هم قابلیت شارژ و دشارژ دارد. با این فرق که انرژی در سیم پیچ به صورت الکترو مغناطیسی ذخیره می شود. در صورتی که انرژی ذخیره شده در خازن از نوع الکترواستاتیکی است.
دیود:
1-نیمه هادی ها
2-پیوندP-N
3-کاربرد دیود:
الف-یکسوساز نیم موج
ب-یکسوساز تمام موج
4-انواع دیود نیمه هادی:
● دیود اتصال نقطه ای
● دیود زنر
●دیود خازنی (ورکتور)
●دیود تونلی
● دیود نوردهنده یا
LED :
1-کاربردهایLED
2- دیود نورانی مادون قرمز IR
خازن
خازنها انرژی الکتریکی را نگهداری میکنند و به همراه مقاومتها، در مدارات تایمینگ استفاده میشوند. همچنین از خازنها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده میشود. از خازنها در مدارات بعنوان فیلتر هم استفاده میشود. زیرا خازنها به راحتی سیگنالهای غیر مستقیم AC را عبور میدهند ولی مانع عبور سیگنالهای مستقیم DC میشوند .
ظرفیت
ظرفیت معیاری برای اندازه گیری توانایی نگهداری انرژی الکتریکی است. ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است. واحد اندازه گیری ظرفیت فاراد است. 1 فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا میباشد. بنابراین استفاده از واحدهای کوچکتر نیز در خازنها مرسوم است. میکروفاراد µF، نانوفاراد nF و پیکوفاراد pF واحدهای کوچکتر فاراد هستند.
µ means 10-6 (millionth), so 1000000µF = 1F
n means 10-9 (thousand-millionth), so 1000nF = 1µF
p means 10-12 (million-millionth), so 1000pF = 1nF
انواع خازنها
انواع مختلفی از خازنها وجود دارند که میتوان از دو نوع اصلی آنها، با پلاریته (قطب دار) و بدون پلاریته (بدون قطب) نام برد.
خازنهای قطب دار
خازنهای الکترولیت
در خازنهای الکترولیت قطب مثبت و منفی بر روی بدنه آنها مشخص شده و بر اساس قطبها در مدارات مورد استفاده قرار میگیرند. دو نوع طراحی برای شکل این خازنها وجود دارد. یکی شکل اَکسیل که در این نوع پایههای یکی در طرف راست و دیگری در طرف چپ قرار دارد و دیگری رادیال که در این نوع هر دو پایه خازن در یک طرف آن قرار دارد. در شکل نمونهای از خازن اکسیل و رادیال نشان داده شده است .
در خازنهای الکترولیت ظرفیت آنها بصورت یک عدد بر روی بدنه شان نوشته شده است. همچنین ولتاژ تحمل خازنها نیز بر روی بدنه آنها نوشته شده و هنگام انتخاب یک خازن باید این ولتاژ مد نظر قرار گیرد. این خازنها آسیبی نمیبینند مگر اینکه با هویه داغ شوند .
خازنهای تانتالیوم
خازنهای تانتالیم هم از نوع قطب دار هستند و مانند خازنهای الکترولیت معمولاً ولتاژ کمی دارند. این خازنها معمولاً در سایزهای کوچک و البته گران تهیه میشوند و بنابراین یک ظرفیت بالا را در سایزی کوچک ارایه میدهند.
در خازنهای تانتالیوم جدید، ولتاژ و ظرفیت بر روی بدنه آنها نوشته شده ولی در انواع قدیمی از یک نوار رنگی استفاده میشود که مثلا دو خط دارد (برای دو رقم) و یک نقطه رنگی برای تعداد صفرها وجود دارد که ظرفیت بر حست میکروفاراد را مشخص میکنند. برای دو رقم اول کدهای استاندارد رنگی استفاده میشود ولی برای تعداد صفرها و محل رنگی، رنگ خاکستری به معنی × 0.01 و رنگ سفید به معنی × 0.1 است. نوار رنگی سوم نزدیک به انتها، ولتاژ را مشخص میکند بطوری که اگر این خط زرد باشد 3/6 ولت، مشکی 10 ولت، سبز 16 ولت، آبی 20 ولت، خاکستری 25 ولت و سفید 30 ولت را نشان میدهد.
برای مثال رنگهای آبی - خاکستری و نقطه سیاه به معنی 68 میکروفاراد است.
آبی - خاکستری و نقطه سفید به معنی 8/6 میکروفاراد است .
خازنهای بدون قطب
خازنهای بدون قطب معمولا خازنهای با ظرفیت کم هستند و میتوان آنها را از هر طرف در مدارات مورد استفاده قرار داد. این خازنها در برابر گرما تحمل بیشتری دارند و در ولتاژهای بالاتر مثلا 50 ولت، 250 ولت و ... عرضه میشوند.
پیدا کردن ظرفیت این خازنها کمی مشکل است چون انواع زیادی از این نوع خازنها وجود دارد و سیستمهای کد گذاری مختلفی برای آنها وجود دارد. در بسیاری از خازنها با ظرفیت کم، ظرفیت بر روی خازن نوشته شده ولی هیچ واحد یا مضربی برای آن چاپ نشده و برای دانستن واحد باید به دانش خودتان رجوع کنید. برای مثال بر 1/0 به معنی 0.1µF یا 100 نانوفاراد است. گاهی اوقات بر روی این خازنها چنین نوشته میشود (4n7) به معنی 7/4 نانوفاراد. در خازنهای کوچک چنانچه نوشتن بر روی آنها مشکل باشد از شمارههای کد دار بر روی خازنها استفاده میشود. در این موارد عدد اول و دوم را نوشته و سپس به تعداد عدد سوم در مقابل آن صفر قرار دهید تا ظرفیت بر حسب پیکوفاراد بدست اید. بطور مثال اگر بر روی خازنی عدد 102 چاپ شده باشد، ظرفیت برابر خواهد بود با 1000 پیکوفاراد یا 1 نانوفاراد .
کد رنگی خازن ها
در خازنهای پلیستر برای سالهای زیادی از کدهای رنگی بر روی بدنه آنها استفاده میشد. در این کدها سه رنگ اول ظرفیت را نشان میدهند و رنگ چهارم تولرانس را نشان میدهد . برای مثال قهوهای - مشکی - نارنجی به معنی 10000 پیکوفاراد یا 10 نانوفاراد است. خازنهای پلیستر امروزه به وفور در مدارات الکترونیک مورد استفاده قرار میگیرند. این خازنها در برابر حرارت زیاد معیوب میشوند و بنابراین هنگام لحیمکاری باید به این نکته توجه داشت.
ترتیب رنگی خازنها به ترتیب از ۰ تا ۹ به صورت زیر است:
سیاه، قهوه ای، قرمز، نارنجی، زرد، سبز، آبی، بنفش، خاکستری، سفید
خازنها با هر ظرفیتی وجود ندارند. بطور مثال خازنهای 22 میکروفاراد یا 47 میکروفاراد وجود دارند ولی خازنهای 25 میکروفاراد یا 117 میکروفاراد وجود ندارند. دلیل اینکار چنین است :
فرض کنیم بخواهیم خازنها را با اختلاف ظرفیت ده تا ده تا بسازیم. مثلاً 10 و 20 و 30 و. .. به همین ترتیب. در ابتدا خوب بنظر میرسد ولی وقتی که به ظرفیت مثلاً 1000 برسیم چه رخ میدهد ؟
مثلاً 1000 و 1010 و 1020 و. .. که در اینصورت اختلاف بین خازن 1000 میکروفاراد با 1010 میکروفاراد بسیار کم است و فرقی با هم ندارند پس این مساله معقول بنظر نمیرسد. برای ساختن یک رنج محسوس از ارزش خازنها، میتوان برای اندازه ظرفیت از مضارب استاندارد 10 استفاده نمود. مثلاً 7/4 - 47 - 470 و. .. و یا 2/2 - 220 - 2200 و.. .