بخشی از مقاله
جریان الکتریکی در برق ، جریان سرعت عبور الکترونها در یک سیم مسی یا جسم رسانا است. جریان قراردادی در تاریخ علم الکتریسته ابتدا به صورت عبور بارهای مثبت تعریف شد. هر چند امروزه میدانیم که در صورت داشتن رسانای فلزی ، جریان الکتریسته ناشی از عبور بارهای منفی ، الکترون ، در جهت مخالف است. علیرغم این درک اشتباه ، کماکان تعریف قراردادی جریان تغییری نکرده است. نمادی که عموما برای نشان دادن جریان الکتریکی (میزان باری که در ثانیه از مقطع هادی عبور میکند) در مدار بکار میرود، I است.
تاریخچه برق و الكتريسيته
تاریخ الکتریسیته به 600 سال قبل از میلاد میرسد. در داستانهای میلتوس (Miletus) میخوانیم که یک کهربا در اثر مالش کاه را جذب میکند. مغناطیس از موقعی شناخته شد که مشاهده گردید، بعضی از سنگها مثل مگنیتیت ، آهن را میربایند. الکتریسیته و مغناطیس ، در ابتدا جداگانه توسعه پیدا کردند، تا این که در سال 1825 اورستد (Orested) رابطهای بین آنها مشاهده کرد. بدین ترتیب اگر جریانی از سیم بگذرد میتواند یک جسم مغناطیسی را تحت تأثیر قرار دهد. بعدها فاراده کشف کرد که الکتریسیته و مغناطیس جدا از هم نیستند و در مبحث الکترومغناطیس قرار میگیرد.
مشخصات جریان الکتریکی
از نظر تاریخی نماد جریان I ، از کلمه آلمانی Intensit که به معنی شدت است، گرفته شده است. واحد جریان الکتریکی در دستگاه SI ، آمپر است. به همین علت بعضی اوقات جریان الکتریکی بطور غیر رسمی و به دلیل همانندی با واژه ولتاژ ، آمپراژ خوانده میشود. اما مهندسین از این گونه استفاده ناشیانه ، ناراضی هستند.
آیا شدت جریان در نقاط مختلف هادی متفاوت است؟
شدت جریان در هر سطح مقطع از هادی مقدار ثابتی است و بستگی به مساحت مقطع ندارد. مانند این که مقدار آبی که در هر سطح مقطع از لوله عبور میکند، همواره در واحد زمان همه جا مساوی است، حتی اگر سطح مقطعها مختلف باشد. ثابت بودن جریان الکتریسیته از این امر ناشی میشود که بار الکتریکی در هادی حفظ میشود. در هیچ نقطهای بار الکتریکی نمیتواند روی هم متراکم شود و یا از هادی بیرون ریخته شود. به عبارت دیگر در هادی چشمه یا چاهی برای بار الکتریکی وجود ندارد.
سرعت رانش
میدان الکتریکی که بر روی الکترونهای هادی اثر میکند، هیچ گونه شتاب برآیندی ایجاد نمیکند. چون الکترونها پیوسته با یونهای هادی برخورد میکنند. لذا انرژی حاصل از شتاب الکترونها به انرژی نوسانی شبکه تبدیل میشود و الکترونها سرعت جریان متوسط ثابتی (سرعت رانش) در راستای خلاف جهت میدان الکتریکی بدست میآورند.
چگالی جریان الکتریکی
جریان I یک مشخصه برای اجسام رسانا است و مانند جرم ، حجم و ... یک کمیت کلی محسوب میشود. در حالی که کمیت ویژه دانستیه یا چگالی جریان j است که یک کمیت برداری است و همواره منسوب به یک نقطه از هادی میباشد. در صورتی که جریان الکتریسیته در سطح مقطع یک هادی بطور یکنواخت جاری باشد، چگالی جریان برای تمام نقاط این مقطع برابر j = I/A است. در این رابطه A مساحت سطح مقطع است. بردار j در هر نقطه به طرفی که بار الکتریکی مثبت در آن نقطه حرکت میکند، متوجه است و بدین ترتیب یک الکترون در آن نقطه در جهت j حرکت خواهد کرد.
اشکال مختلف جریان الکتریکی
در هادیهای فلزی ، مانند سیمها ، جریان ناشی از عبور الکترونها است، اما این امر در مورد اکثر هادیهای غیر فلزی صادق نیست. جریان الکتریکی در الکترولیتها ، عبور اتمهای باردار شده به صورت الکتریکی (یونها) است، که در هر دو نوع مثبت و منفی وجود دارند. برای مثال، یک پیل الکتروشیمیایی ممکن است با آب نمک (یک محلول از کلرید سدیم) در یک طرف غشا و آب خالص در طرف دیگر ساخته شود. غشا به یونهای مثبت سدیم اجازه عبور میدهد، اما به یونهای منفی کلر این اجازه را نمیدهد. بنابراین یک جریان خالص ایجاد میشود.
جریان الکتریکی در پلاسما عبور الکترونها ، مانند یونهای مثبت و منفی است. در آب یخ زده و در برخی از الکترولیتهای جامد ، عبور پروتونها ، جریان الکتریکی را ایجاد میکند. نمونههایی هم وجود دارد که علیرغم اینکه در آنها ، الکترونها بارهایی هستند که از نظر فیزیکی حرکت میکنند، اما تصور جریان مانند 'حفرههای (نقاطی که برای خنثی شدن از نظر الکتریکی نیاز به یک الکترون دارند) مثبت متحرک ، قابل فهم تر است. این شرایطی است که در یک نیم هادی نوع p وجود دارد.
اندازه گیری جریان الکتریکی
جریان الکتریکی را میتوان مستقیما توسط یک گالوانومتر اندازه گیری کرد. اما این روش نیاز به قطع مدار دارد که گاهی مشکل است. جریان را میتوان بدون قطع مدار و توسط اندازه گیری میدان مغناطیسی که جریان تولید میکند، محاسبه کرد. ابزارهای مورد نیاز برای این کار شامل سنسورهای اثر هال ، کلمپ گیرههای جریان و سیم پیچهای روگووسکی است.
مقاومت الکتریکی
اگر اختلاف پتانسیل معینی را یک بار به دو انتهای سیم مسی و بار دیگر به دو انتهای میله چوبی وصل کنیم، شدت جریانهای حاصل در هر لحظه با هم اختلاف زیادی خواهند داشت. خاصیتی از هادی را که اختلاف مزبور را باعث میشود، مقاومت الکتریکی گویند، که آن را با R نشان میدهند و مقدار آن برابر R = V/I است که در آن V اختلاف پتانسیل بین دو سر سیم و I جریان الکتریکی است. واحد مقاومت الکتریکی اهم یا ولت بر آمپر میباشد.
توان الکتریکی
یک مدار الکتریکی را در نظر میگیریم که حامل جریان I و ولتاژ V بوده و یک مقاومت Rدر آن قرار دارد. بار الکتریکی dq موقع عبور از مقاومت به اندازه Vdq ، از انرژی پتانسیل الکتریکی خود را از دست میدهد. طبق قانون بقای انرژی ، این انرژی در مقاومت به صورت دیگری ، مثلا گرما ظاهر میشود. گر در مدت زمان dt ، انرژی du حاصل شود، در این صورت داریم:
P=du/dt
در این رابطه P ، توان الکتریکی است که دارای واحد وات میباشد. برای یک مقاومت میتوان توان را به صورت زیر:
P = RI2 نوشت.
قانون اهم
قانون اهم که به نام کاشف آن جرج اهم نام گذاری شده است، بیان می دارد که نسبت اختلاف پتانسیل (یا افت ولتاژ) بین دو سر یک هادی (و مقاومت) به جریان عبور کننده از آن به شرطی که دما ثابت بماند، مقدار ثابتی است:
V \over I} = R}
که در آن V ولتاژ و I جریان است. این معادله منجر به یک ثابت نسبی R می شود که مقاومت الکتریکی آن وسیله نامیده می شود. این قانون تنها برای مقاومتهایی صادق است که مقاومت شان به ولتاژ اعمالی دو سرشان وابسته نباشد که به این مقاومت ها مقاومت های اهمی یا ایده آل یا وسیله های اهمی گفته می شود. خوشبختانه شرایطی که در آن قانون اهم صادق است، بسیار عمومی است.( قانون اهم هیچگاه برای ابزارهای دنیای واقعی کاملا دقیق نیست چرا که هیچ ابزار واقعی وجود ندارد که یک ابزار اهمی باشد). معادله V / I = R حتی برای ابزارهای غیر اهمی هم صادق است اما در آن صورت دیگر مقاومت R یک مقدار ثابت نیست و به مقدار V وابسته است. برای اینکه بررسی کنیم که آیا ابزاری اهمی است یا نه، می توان Vرا بر حسب I رسم کرد و نمودار بدست آمده را با خط مستقیمی که از مبدا می گذرد مقایسه کرد. معادله قانون اهم اغلب بصورت :
V = I \cdot R
بیان می شود چرا که این معادله صورتی است که اکثر اوقات همراه مقاومت ها بکار برده می شود. فیزیکدانان اغلب فرم میکروسکوپیک قانون اهم را استفاده می کنند:
{mathbf{j} = \sigma \cdot \mathbf{E\
که در آن j چگالی جریان ( جریان عبوری از واحد حجم)، & هدایت و E میدان الکتریکی است. و در واقع فرمی است که اهم قانونش را بیان کرد. فرم عمومی V = I·R که در طراحی مدارات بکار می رود، نسخه ماکروسکوپیک متوسط گیری شده فرم اصلی است. دانستن این مطلب مهم است که قانون اهم یک قانون گرفته شده از ریاضیات نیست ولی بخوبی توسط شواهد تجربی تایید می شود. گاهی اوقات هم قانون اهم به هم می خورد چرا که این قانون بسیار ساده سازی شده است. منشا اصلی به وجود آمدن مقاومت در مواد در برابر جریان الکتریکی را می توان عیب ها، ناخالصی های مواد و این واقعیت که الکترون ها خودشان اتم ها را به این طرف و آن طرف می زنند، دانست. وقتی که دمای فلز افزایش می یابد، عامل سوم نیز افزایش می یابد بنابراین، وقتی که یک جسم به علت عبور جریان الکتریکی از آن گرم می شود، مانند رشته داخل حباب لامپ، مقاومتش افزایش می یابد. مقاومت یک جسم از معادله زیر بدست می آید:
(R = \frac{L}{A} \cdot \rho = \frac{L}{A} \cdot \rho_0 (\alpha (T - T_0) + 1
که در آن & مقاومت ویژه، Lطول جسم هادی، A مساحت سطح مقطع آن، T دمای جسم، T_0 یک دمای مرجع (معمولا دمای اتاق) و rho_0 و alpha ثابت های ویژه ماده جسم هادی اند.
آمپر متر چيست؟
لغت ammeter از كلمه amper مشتق شده است. توجه كنيد كه حرف P در كلمه amper حذف شده است و فقط دو حرف اول اين كلمه در لغت ammeter بكار رفته است. ما نميتوانيم الكترونها يا پروتونها را ديده يا لمس كنيم. به همين دليل نميتوانيم آنها را بشماريم. در نتيجه به ابزاري احتياج داريم تا بتوانيم آنها را بشماريم. شدت روشنايي لامپ مشخصاتي از شدت جريان را به ما نشان ميدهد، ولي دو نقص اصلي دارد. اول اينكه نميتواند شدت جريان را در واحدي كه به آساني قابل يادداشت و مقايسه با اندازه گيري شدت جريان در محلها و زمانهاي ديگر است، اندازه بگيرد. همچنين در شدت جريانهاي معين ميتوان از آن استفاده كرد. اگر مقدار شدت جريان خيلي كم باشد، لامپ روشن نميشود و اگر شدت جريان خيلي زياد باشد، لامپ ميسوزد. براي رفع نقص اول به ابزاري احتياج داريم كه به ما نشان دهد، چند آمپر (چند كولن الكترون در هر ثانيه) در مدار جريان دارد. دستگاه مخصوصي كه اين اندازه گيري را انجام ميدهد، آمپرمتر (ammetr) ناميده ميشود.
طرز كار آمپرمتر
آمپرمتر مقدار شدت جرياني را كه از آن ميگذرد، بوسيله يك عقربه كه در روي صفحه درجه بندي شده حركت ميكند، نشان ميدهد. ميزان انحراف عقربه آمپرمتر با تعداد الكترونهايي كه از اين دستگاه ميگذرند، نسبت مستقيم دارد. يعني نشان ميدهد كه چه مقدار بار الكتريكي در ثانيه از آن عبور ميكند.
طرز استفاده از آمپرمتر
آمپرمتر از خيلي جهات شبيه كنتور آب است كه ميزان آب مصرف شده منازل را اندازه ميگيرد. هر دو دستگاه (آمپرمتر و كنتور آب) بايد طوري در مدار قرار گيرند كه جريانهاي الكتريسيته و آب از آنها بگذرد، تا بتوان شدت جريان را اندازه گرفت. تمام آبي كه از لوله اصلي وارد خانه ميشود، بايد از كنتور آب عبور كند. آمپرمتر نيز بايد طوري قرار گيرد كه تمام جريان الكتريسته از ان بگذرد، تا بتوان تمام شدت جريان الكتريكي را بوسيله آن اندازه گرفت. اين نوع اتصال را اتصال متوالي يا سري ميگويند. يعني اجزا تشكيل دهنده مدار در يك خط مستقيم (يك مسير هدايت كننده) به يكديگر اتصال دارند.
مراحل قرار دادن آمپرمتر در مدار
براي قرار دادن آمپرمتر در مدار متوالي به ترتيب زير عمل كنيد.
1. نيروي خارجي را كه به مدار وارد ميشود، قطع كنيد.
2. آن قسمت از مدار را كه آمپرمتر در آن قرار دارد، باز كنيد يا ببريد.
3. انتهاي مثبت آمپرمتر را به سيمي كه به قطب مثبت پيل ميرود، وصل كنيد.
4. انتهاي منفي آمپرمتر را به سيمي كه به قطب منفي پيل ميرود، وصل كنيد.
مراحل 4 , 3 (كه عبارتند از انتقال مثبت به مثبت ، منفي به منفي) را دقت در پلاريته مينامند و اين امر مهم است. زيرا دستگاه اندازه گيري آمپرمتر شدت جريان را در يك جهت نشان ميدهد. اگر دستگاه اندازه گيري را بطور عكس در مدار قرار دهيم، چون جريان در جهت عكس (كه مناسب آمپرمتر نيست) از آن ميگذرد و انحراف عقربه بوجود ميآيد كه باعث شكسته شدن يا خم شدن آن ميگردد.