دانلود مقاله شبکه توزیع و انتقال برق تا مصرف

word قابل ویرایش
73 صفحه
13700 تومان
137,000 ریال – خرید و دانلود

فهرست مطالب
شبکه قدرت از تولید تا مصرف ۱
محدودیت تولید ۱
انتقال قدرت ۱
توزیع و مصرف قدرت ۱
آرایش ترانسفورماتورهای قدرت ۲
اجزاء یک پست انتقال یا فوق توزیع ۲
ضرورت اتصال به زمین – ترانس نوتر ۲
تانک رزیستانس ۳
ضرورت برقراری حفاظت ۳
انواع سیستمهای اورکارنتی ۴
سیستم حفاظت اورکارنتی فاز به زمین ۴
حفاظت باقیمانده یا رزیجوآل ۵
هماهنگ کردن رله های جریانی زمان ثابت ۵
اشکال رله های با زمان ثابت ۵
رله های اورکانت زمان معکوس ۶
انواع رله های جریانی با زمان معکوس و موارد استفاده هر یک ۶
کاربرد رله های جریانی ۷
رله های ولتاژی ۷
حفاظت فیدر خازن ۷
رله اتومات برای قطع و وصل بنکهای خازنی ۸
حفاظت فیدر کوپلاژ ۲۰ کیلوولت ۹
حفاظت فیدر ترانس ۲۰ کیلوولت ۹
حفاظت جهتی جریان ۹
حفاظت R.E.F 10
رله های نوترال ۱۰
حفاظت ترانسفورماتور قدرت ۱۰
رله بوخهلتس ۱۱
رله های ترمیک یا کنترل کننده درجه حرارت ترانس ۱۲
رله دیفرنسیال ۱۳
چند نکته در رابطه با رله دیفرنسیال ۱۶
رله دیفرنسیل با بالانس ولتاژی ۱۷
رله بدنه ترانس ۱۷
حفاظت جریانی برای ترانسفورماتور ۱۸
رله های رگولاتور ولتاژ ۱۸
رله اضافه شار ۲۰
حفاظت باسبار ۲۱
نوع اتصالی های باسبار ۲۲
خصوصیات حفاظت باسبار ۲۲
انواع حفاظت باسبار ۲۲
حفاظت خط ۲۳
نکاتی در خصوص رله های دیستانس ۲۵
نوسان قدرت و حفاظت رله دیستانس در مقابل آن ۲۷
رله دوباره وصل کن ۲۹
کاربرد رله دوباره وصل کن ۳۱
ضد تکرار ۳۲
رله واتمتریک ۳۳
رله مؤلفه منفی ۳۶
سنکرون کردن ۳۹
رله سنکرون چک ۴۱
رله سنکرونایزینگ ( سنکرون کننده ژنراتورها ) ۴۳
رله فرکانسی – رله حذف بار ۴۴
سیستم اینتریپ و اینترلاک ۴۶

شبکه قدرت از تولید تا مصرف
یک شبکه قدرت از نقطه تولید تا مصرف،شامل اجزاء و مراتبی است که ژنراتور را بعنوان مولد و ترانسهاو خطوط انتقال را بعنوان مبدل و واسطه در بر می‌گیرد .
محدودیت تولید :
ژنراتورها معمولاً” جریانهای بزرگ را تولید میکنند اما به لحاظ ولتاژ محدودیت دارند،زیرا عایق بندی شینه ها حجم و وزن زیادی ایجاد می‌کند و به همین لحاظ ژنراتورها در نورم های ولتاژی ۶،۱۱،۲۱ و حداکثر ۳۳ کیلو ولت ساخته می‌شوند .

انتقال قدرت :
بر عکس تولید که به لحاظ ولتاژ محدودیت دارد، در انتقال قدرت،مشکل جریان مطرح است زیرا هر چه جریان بیشتر شود،مقطع سیمها بیشتر و در نتیجه ساختمان دکل ها بزرگتر و تلفات انتقال نیز فزونی می‌گیرد . به همین لحاظ سعی می‌شود که پس از تولید جریان،با استفاده از ترانسفورماتورهای افزاینده،سطح ولتاژ افزایش و میزان جریان کاهش داده شود . ضمنا” عمل انتقال سه فاز،توسط سه سیم صورت می‌گیرد ( به سیم چهارم نیازی نیست ) و برای تشخیص اتصال کوتاههای احتمالی فاز به زمین،از شبکه زمین و نوترالی که در پست مبدا ایجاد می‌کنند،سود می‌جویند .

توزیع و مصرف قدرت :
پس از انتقال قدرت تا نزدیکی های منطقه مصرف،سطح ولتاژ در چند مرحله پایین می‌آید تا قابل مصرف شود. در ایران درحال حاضر برای انتفال قدرت ازولتاژهای ۴۰۰ و ۲۳۰ کیلو ولت (فاز- فاز) استفاده می‌شود و در مناطق شهری نیز این ولتاژها به سطح ۶۳ کیلو ولت ( شبکه فوق توزیع )کاهش پیدا می‌کند و با تبدیل ۶۳ به ۲۰ کیلو ولت،ولتاژ اولیه برای ترانسفورماتورهای توزیع محلی مهیا می‌گردد تا با ولتاژ ۴۰۰ ولت ( فاز- فاز )،برق مورد نیاز مصرف کننده های عادی فراهم آید .

آرایش ترانسفورماتورهای قدرت :
ترانسفورماتورهای انتقال،از آرایش ستاره / مثلث برخوردارند . طرف ستاره به ولتاژ بالاتر و طرف مثلث به ولتاژ پایین تر متصل می‌شود تا در عایق بندی و حجم سیم پیچ ها صرفه جوئی شود . تپ چنجر نیز که بعنوان تنظیم کننده ولتاژ بکار گرفته می‌شود معمولاً در طرف فشار قوی تعبیه می‌گردد تا عمل تغییر تپ (Tap) را در جریانهای کمتری انجام دهد و جرقه کنتاکتها به حداقل رسد .

اجزاء یک پست انتقال یا فوق توزیع :
یک پست انتقال یا فوق توزیع، معمولاً شامل خط یا خطوط ورودی،بریکرها،سکسیونر ها، باسبار طرف فشار قوی،ترانس قدرت، ترانس نوتر،ترانس مصرف داخلی،باسبار فشار متوسط،فیدر های خروجی،فیدرهای خازن و غیرو می‌شود و در هر پست پانلهای رله ای و متیرینگ،عمل حفاظت و اندازه گیری را بعهده دارند . باطریخانه و شارژرها نیز وظیفه تولید سیستم D.C. را که لازمه غالب رله ها می‌باشد انجام می‌دهند .

ضرورت اتصال به زمین :
تا زمانی که اتصالی با زمین در شبکه اتفاق نیفتاده باشد،نیازی به برقراری اتصال نوترال با زمین نمی‌باشد، اما به لحاظ امکان وقوع اتصال کوتاه های با زمین و برقراری سیستم حفاظتی برای تشخیص آنها،ناچار به داشتن سیستم نوترال خواهیم بود،به این ترتیب که سه فاز شبکه را از طریق یک ترانس نوتر (معمولاً داری سیم پیچ زیگزاک ) به یکدیگر متصل و نقطه صفر یا خنثی (نول ) آنرا با زمین مرتبط می‌کنیم . این ترانس ضمن ایجاد نوترال برای شبکه،بدلیل راکتانسی که دارد ،جریان اتصال کوتاه با زمین را نیز محدود می‌کند .

تانک رزیستانس :
عبارت از یک تانک فلزی پر از الکترولیت بسیار رقیق کربنات سدیم است . خاصیت این محلول آن است که مقاومت الکتریکی آن به طور معکوس در برابر حرارت تغییر می‌کند . در صورت پیدا شدن جریان نشتی با زمین ایجاد حرارت در مایع و کاهش مقاومت آن،جریان عبوری افزایش یافته و به سرعت به حدی می‌رسد که رله نوتر را تحریک نماید . بنابراین خاصیت این مقاومت،آشکار نمودن جریانهای نشتی کم و غیر قابل تشخیص بوسیله رله نوترال اصلی می‌باشد تا از عبور جریان مداوم نشتی و داغ شدن ترانس نوتر و سوختن احتمالی آن جلوگیری بعمل آورد .

خواص تانک رزیستانس به همین مورد محدود نمی‌شود بلکه مقاومت حالت نرمال آن و راکتانس ترانس نوتر،مجموعا” به حدی انتخاب می‌شود که آمپر اتصال کوتاه را در حد مورد نظر محدود نماید . از مزایای دیگر آن،رزیستانس خالص آنست ( در نقطه مقابل ترانس نوتر که تقریبا ۹۷% راکتانس خالص است ) و بنابراین در مواردی که انتخاب یک ترانس نوتر با راکتانس بالا به دلیل افزایش اندوکتانس سلفی پست،از بروز و ظهور هارمونیکها جلوگیری می‌کنند تا عملکرد سلکتیو رله ها مختل نشود .

ضرورت برقراری حفاظت :
پس از برپایی یک سیستم قدرت،اول چیزی که نیاز به آن احساس می‌شود،برخورداری سیستم از یک حفاظت اتوماتیک است . در اوایل پیدایش شبکه های قدرت،سعی می‌شد سیستم را در مقابل جریانهای اضافی ( Exess Currents) حفاظت نماید و اینکار توسط فیوز انجام می‌شد اما با گسترش شبکه ها و تمایل به داشتن حفاظتی انتخاب کننده ( Selective )،یعنی آن نوع از حفاظت که بواسطه آن برای هر خطا ( Fault) ئی در هر نقطه از شبکه،مناسبترین عمل قطع انجام شود، سیستم حفاظت Over current (که اصطلاحاً ماکزیمم جریان گفته می‌شود) مطرح شد و گسترش یافت .

البته نباید حفاظت اورکارنتی را با حفاظت over load ( اضافه بار )،که بر مبنای ظرفیت حرارتی مدار منظور می‌شود،اشتباه گرفت . در حفاظت اخیر اگر بار از مقدار معینی ( معمولاً ۲/۱ برابر جریان نامی‌خط ) بیشتر شود،فرمان قطع رله صادر می‌شود در حالیکه منظور عمده از طرح حفاظت اورکارنتی آنست که در صورت بروز خطا، رله ها به ترتیب نزدیکی به نقطه اتصالی در نوبت قطع بایستند و در صورت عمل نکردن یک رله،رله بعدی فرمان قطع صادر کند .
معمولاً در تنظیم گذاری رله های اورکارنت به گونه ای عمل می‌شود که هر دو منظور حاصل شود.

انواع سیستمهای اورکارنتی :
در جائیکه نیروگاه فقط یک بار منفرد را تغذیه می‌دهد، نیاز حتمی‌به وجود رله اورکارنت نیست و رله ای که بتواند پس از تاخیر معینی مدار را قطع نماید،کافی به نظر میرسد . اما در یک شبکه توسعه یافته،که هر باسبار بیش از یک خروجی را تغذیه می‌کند،رفتار سلکتیو بیشتری لازم است تا قسمت حذف شده و خاموشی حاصله به حداقل رسد .

سیستم حفاظت اورکارنتی فاز به زمین :
حفاظت اورکارنتی برای تک تک فازها ضروریست اما یک رله زمین Earth Foult = E/F برای هر سه فاز کافیست . غالباً نیاز به آن است که رلهE/F نسبت به جریانهای زمین بسیار حساس باشد . بعبارت دیگر،تنظیم رله زمین اغلب کمتر از مقدار تنظیمی‌رله فاز قرار می‌گیرد ( حدود۲۰ % آن ).

حفاظت باقیمانده یا رزیجوال :
در صورتیکه بخواهیم رله زمین به جریانهای بسیار کم زمین حساس باشد،از اتصال باقیمانده یا Rsidual Connection ) ) استفاده می‌شود،در این روش،سیم پیچهای ثانویه سه ترانس جریان – یکی برای هر فاز – بصورت موازی بسته می‌شوند و مشترکا” یک رله زمین را تغذیه می‌کنند . در حالتی که وضعیت نرمال باشد،خروجی مجموعه این ترانس ها صفر است و همچنین در حالتی که اتصال کوتاه دو فاز رخ دهد،این تعادل همچنان باقی می‌ماند . خط پارگی در یک فاز ( بدون اتصالی با زمین ) نیز باعث عمل رله نمی‌شود . از آنجائیکه رله زمین در حالت تعادل جریان (درحالت نرمال) تحریک نمی‌شود،می‌توان تنظیم آنرا پایین انتخاب نمود و آنرا برای هر مقدار جریان نشتی زمین حساس کرد .

هماهنگ کردن رله های جریانی زمان ثابت :
اگر تنظیم رله های پشت سر هم در یک شبکه را به گونه ای قرار دهیم که دورترین رله نسبت به نقطه اتصالی،با فاصله زمانی معینی (نسبت به رله های ما قبل و ما بعد خود) فرمان قطع دهد،در آن صورت چنین هماهنگی رله ای را هماهنگی جریانی- زمانی و فاصله زمانی بین عملکرد یک رله و رله بعدی را پله زمانی یا Margin می‌نامیم .

در این شکل سیستم حفاظتی،رله های اورکارنت با عملکرد آنی (Instataneous R) نیز بعنوان راه انداز و یا آشکار ساز اتصالی بکار می‌روند. این رله ها می‌باید تنظیمات معینی داشته باشند .
اشکال رله های با زمان ثابت ( Definite – time ) :
در صورتی که در اتصالیهای ضعیف و شدید،رله ها به ترتیب تنظیمات زمان ثابت خود به عمل در آیند،المان های شبکه خسارت بیشتری می‌پذیرند و این مورد از نقاط ضعف رله های جریانی با زمان ثابت است .

رله های اورکانت زمان معکوس ( invers –time )
اشکال فوق در رله های زمان ثابت وجود داشت،در رله های با زمان معکوس کمتر می‌شود . در این رله ها در صورت زیاد شدن جریان عبوری،زمان عملکرد رله کوتاهتر می‌شودو در نتیجه ترانسفورماتور و سایر المان های شبکه،مدت کمتری تحت جریان اتصالی قرار می‌گیرند و لطمات کمتری متوجه آنها می‌شود . در عین آنکه منحنی های رله های پشت سرهم را می‌توان طوری انتخاب نمود که انتخاب سطح سلکتیو برقرار بماند .

انواع رله های جریانی با زمان معکوس و موارد استفاده هر یک :
این رله ها بسته به شیب منحنی آنها،انواعی دارند،از جمله ؛
۱- رله های زمان معکوس نرمال(normally inverse)
2- رله های زمان معکوس دارای شیب بیشتر(very inverse)
3- رله های زمان معکوس دارای شیب تند(extremely inverse)
نوع اول معمولاً”در همه شبکه ها کاربرد دارد.نوع دوم در جایی مناسب است که جریان اتصال کوتاه به نسبتی که از منبع دور می‌شویم،کاهش قابل توجهی داشته باشد .منحنی این رله ها به صورتی است که زمان عملکرد آنها با دو برابر شدن جریان ،حدودا”نصف می‌شود . نوع سوم در آن تیپ از شبکه های توزیع مناسبت دارد که در آنها بهنگام کلید زنی،جریان زیاد و نسبتا” طولانی کشیده می‌شود .چنین جریانهایی با در مدار باقی ماندن وسایلی از قبیل پمپها ،یخچالها و غیره ایجاد می‌شود بنابراین لازم است ازآن نوع منحنی استفاده شود که زمان عملکرد تاخیری طولانی بهنگام جریان دادن فیدر داشته باشد و بعلت این خاصیت ویژه است که این رله کاربرد می‌یابد ،در عین آنکه می‌توان آنرا با فیوزهای بعد از آن نیز هماهنگ نمود(منحنی این رله بسیار نزدیک به منحنی عملکرد فیوزها می‌باشد ).

کاربرد رله های جریانی
از رله های جریان با زمان ثابت و زمان معکوس ،در غالب فیدرهای ورودی یا خروجی کاربرد دارد.در فیدرهای خروجی ۲۰کیلو ولت و پایین تر ،ازدورله جریانی در دو فاز و یک رله زمین استفاده می‌شود .حذف رله جریانی از فاز وسط به جهت صرفه جویی صورت می‌گیرد و اشکالی نیز بوجود نمی‌آورد ،اما در ولتاژهای بالاتر ،هر سه فاز از رله جریانی برخوردارند و رله زمین نیز بر سر راه نقطه صفر ترانس جریانها و انتهای سه رله فازها بسته می‌شود .

رله های ولتاژی :
کاربرد رله های ولتاژی محدود است و دو تیپ عمده دارند:
۱- رله ولتاژی که در اثر کاهش ولتاژ به عمل در می‌آید(Under Voltage).
2- رله ولتاژی که در اثر افزایش ولتاژ تحریک می‌شود (Exess Voltage).
از این رله ها در حفاظت فیدرهای خازن ،رگولاتور ولتاژ ترانسفورماتور و حفاظت خطوط ورودی به پست استفاده می‌شود .

حفاظت فیدر خازن:
در مجموعه حفاظتی فیدر خازن از رله های مختلفی استفاده می‌شود از آن جمله :
۱- رله های اورکارنت برای هر فاز
۲- رله های کاهش و افزایش ولتاژ
۳- رله نامتعادلی
در خصوص رله نامتعادلی باید گفت یک رله ولتمتریک حساس است و دو کار انجام می‌دهد ؛

۱- با ایجاد نامتعادلی در نوتر خازنها ،آلارم و سپس فرمان قطع صادر می‌کند .
۲- با بی برق شدن فیدر ترانس مربوطه،فیدر خازن را از مدار خارج می‌سازد . معمولاً خازنهای موازی ( منصوب روی باسبار ۲۰ یا ۶۳ کیلو ولت )،بصورت ستاره دوبل بسته می‌شود و بر سر راه ارتباط دو صفر ستاره،از یک ترانس ولتاژ استفاده می‌شود تا در صورت بروز اشکال در هر یک از خازنها ،این ترانس حاوی ولتاژ شده و رله را تحریک نماید . معمولاً محدوده عملکرد آلارم این رله،پایین تر از حد نرمال فرمان قطع آنست . بهنگامی‌که خازنهای طرفین از بالانس خارج شود (در اثر طول عمر یا قرار گرفتن بنک های خازن در شرایط متفاوت مثلاً آفتاب و سایه )،آلارم خواهیم داشت اما ضعف هر خازن و تغییر ظرفیت نسبتاً شدیدتر باعث صدور فرمان قطع خواهد شد . در صورتی که باسبار ( که خازنها روی آن نصب هستند ) بی برق شود،این رله باز هم فرمان قطع خواهد داشت و بنک های خازنی را از مدار خارج می‌سازد تا بهنگام برقدار شدن مجدد باسبار،پدیده‌ سوئیچینگ باعث انفجار خازن‌ها نگردد .

ضمناً ازتعدادی رله زمانی نیز در حفاظت بنکهای خازنی استفاده می‌شود ،از جمله آنکه یک رله زمانی با تأخیر طولانی در وصل ،باعث می‌شود که هر بار پس از قطع فیدر خازن ،تا مدتی (حدود ۱۰دقیقه )از وصل مجدد آن جلوگیری نماید و این مسئله به آن خاطر است که در ابن مدت ،خازنها فرصت کافی برای دشارژ داشته باشد و باقیمانده شارژ باعث بروز انفجاردر آنها نشود.

رله اتومات برای قطع و وصل بنکهای خازنی :
این وسیله معمولاً به قدرت راکتیو حساس است و می‌تواند در محدوده تنظیمی‌خود ،بنکهای خازنی را یکی پس از دیگری و به ضرورت در مدار آورده یا از مدار خارج سازد .
در بعضی موارد ،امکان دیگری نیز در این رله ها تعبیه می‌شود تا متناسب با کاهش ولتاژ شبکه ،خازنها را وارد مدار نماید و این ارتباط از آن جهت است که ولتاژ شبکه بستگی به میزان بار و همینطور Cos  شبکه دارد و با کم شدن Cos،شدت جریان افزایش یافته ،افت بیشتر ولتاژ مدار را باعث می‌شود و به این ترتیب، می‌توانیم رله را طوری تنظیم کنیم که ولتاژ شبکه از حد محاسبه شده پایین تر آید ،فرمان وصل به فیدر خازن و در حالت عکس آن فرمان قطع صادر کند .

برای آنکه این رله بدرستی و دقت عمل نماید ،داشتن منحنی بار مصرفی یک شبانه روز شبکه ضروری خواهد بود . نقاطی که خازنها باید وارد مدار ویا از آن خارج شوند ،بر مبنای همین منحنی تعیین و به صورت تنطیم روی رله قرار می‌گیرد .دراین صورت می‌توان Cosمدار را در طول شبانه روز به طور خودکار و در حد دلخواهی حفظ نمود .در ضمن ،زمان تأخیری لازم برای در مدار در آوردن خازنها روی همین رله تنظیم می‌شود.

حفاظت فیدر کوپلاژ ۲۰کیلو ولت:
این حفاظت معمولاً سه رله جریانی را شامل می‌شود تنظیم آن به خاطر هماهنگی تا رله های فیدرهای خروجی و فیدر ترانس ،حد وسط این دو قرار می‌گیرد.بنابراین در مواقع بروز اتصالی در یک فیدر و در صورت عدم عملکرد آن فیدر ،این فیدر قطع می‌شود تا فیدر ترانس مربوطه دچار قطع بی مورد نگردد.

حفاظت فیدر ترانس۲۰کیلو ولت:
این حفاظت به لحاظ ترکیب تقریباً مشابه هریک از فیدرهای خروجی می‌باشد با این تفاوت که معمولاً در هر سه فاز از رله جریانی برخوردار است .در صورتیکه ازرله نوع زمان ثابت استفاده شده باشد ،زمانی حدود ۲/۱ثانیه خواهد داشت (با در نظر گرفتن زمان تنظیمی‌۴/۰ثانیه برای فیدرهای خروجی و ۸/۰ثانیه برای فیدر کوپلاژ).زمان۴/۰ثانیه بعنوان margin بین هر دو رله پشت سر هم ،زمان مطلوبی خواهدبود.

حفاظت جهتی جریان:
معمولاً”در مواردی مثل حفاظت ژنراتور در نیروگاه و حفاظت فیدرهای ترانس،از رله های جریانی حساس به جهت جریانDirectional Over Current = D.O.C))استفاده می‌کنند و این امر به خاطر آن است که در مواقع قطع تحریک ژنراتور یا بی برق شدن ترانس ،از معکوس شدن جریان جلوگیری بعمل آید.

حفاظت R.E.F:
R.E.F مخفف Restricted Earth Faultبه معنای اتصال زمین محدودی یا محدود شده می‌باشد و این وجه تسمیه به خاطر آنست که محدوده معینی از مدار مثلاً یک تکه کابل (مثلاً کابل پرتولین حدواسط ترانس و باسبار) را حفاظت می‌نماید .رله دیفرانسیال نیز – که شرح آن بعداً خواهد آمد – همانند این رله ولی به شکل کامل تر،محدوده معینی مثل ترانسفورماتور و یا یک لکه کابل یا خط را حفاظت می‌کند .بنابراین در مواردی که خارج از این محدوده یا ناحیه تعریف شده ،اتصال کوتاه پدید آید،لازم است که این رله به عمل در نیاید .در عین آنکه می‌باید برای اتصای های واقع در محدوده آن ،بسیار حساس باشد .

رله R.E.F یک رله آمپریک بسیار حساس است که در یک مدار دیفرانسیالی (مقایسه کننده جریان ها )قرار گرفته است.این رله به طور موازی بین ترانس جریان نوترال و مدار رزیجوآلی ترانس جریان های فیدر ترانس نصب می‌شود .با یک تحلیل ساده می‌توان نشان دادکه در صورت بروز اتصالی در خارج از محدوده مورد حفاظت این رله ،تحریکی صورت نمیگیرد ولی در صورت وقوع اتصالی در محدوده آن، به سرعت به عمل در می‌آید. عملکرد این رله لحظه ایست. برای غیر حساس کردن رله به خاطر پرهیز از عملکردهای بی مورد،مقاومتی (حدود۱۰اهم)با آن سری می‌شود .

رله های نوترال:
جریان های اتصال کوتاه با زمین و هرگونه جریان نشتی شبکه۲۰کیلو ولت،ازطریق نوترال به شبکه باز می‌گردد . اتصال با زمین در هر یک از خروجی ها،رله ای زمین مربوطه و همچنین رله های نوترال را تحت تاثیر قرار می‌دهد و در صورت گذر از حد تنظیمی‌رله ها باعث تحریک آنها می‌شود،بنابراین لازم است که به لحاظ زمانی نوعی هماهنگی بین رله های زمین خروجی ها و رله های نوترال وجود داشته باشد و بیش از عمل رله نوترال ،رله زمین فیدر حروجی مربوطه فرمان قطع صادر می‌کند . غالباً یکی از رله های نوترال – معمولاً با تنظیم بالا – دارای چنین هماهنگی با هر یک از خروجی ها است .

رله دیگری روی نوترال نصب می‌شود که نصب به جریانهای بسیار کم نیز حساس است و اصطلاحاً Sensetive Earth) Fault ) گفته می‌شود اما دارای زمان تاخیر طولانی ( معمولاً یک دقیقه برای آلارم و سه دقیقه برای فرمان قطع ) می‌باشد . این رله،جریانهای نشتی پابدار یا مقاوم (tand by) را دیده و باعث قطع فیدر ترانس می‌شود . چنین رله ای را رله دو مرحله ای می‌نامند . در مواردی که از تانک رزیستانس بر سر راه ترانس نوتر استفاده نشده است،وجود چنین سیستمی‌ضروری می‌نماید .

حفاظت ترانسفورماتور قدرت :
ترانسفورماتور قدرت به دلیل ارزش اقتصادی آن،با مجموعه از رله های مختلف حفاظت می‌شود .از جمله رله های اصلی حفاظت کننده آن،رله بوخهلتس و رله دیفرانسیل هستند، رله‌های ترمیک نیز ترانسفورماتور را به لحاظ حرارتی کنترل می‌کنند و بسته به درجات تنظیمی‌آنها،سیستم های خنک کنندگی ( همانند فن ها و پمپ روعن ) را بکار می‌اندازد و یا در صورت افزایش بیش از حد حرارت،آلارم و یا فرمان قطع صادر می‌کند .

رله بوخهلتس :
از این رله مکانیکی جهت حفاظت ترانسفورماتورهای روغنی استفاده می‌شوند . این رله بر سر راه مخزن ذخیره روغن و تانک اصلی ( و یا تانک رگولاتور ) ترانس نصب می‌شود و در محفظه پر از روغن خود دارای دو شناور می‌باشد . به هنگام ایجاد جرقه در داخل روغن ترانس ( به دلایل مختلفی از جمله بروز اتصال حلقه در سیم پیچها،اتصال بدنه و … ) و رانش روغن در این وسیله به دلیل هجوم گازها به داخل رله،به عمل در می‌آید و با اتصال کنتاکتهای آن توسط گویهای شناور،فرمان آلارم یا قطع صادر میکند و در این صورت بریکر های طرفین ترانس قطع و ترانس از مدار ایزوله می‌شود . قابل توجه آنکه علی رغم هیئت مکانیکی،این وسیله سرعت عمل بالایی دارد ( حدود ۳۵ میلی ثانیه ) و از این نظر،با رله دیفرانسیال رقابت می‌کند در کشوری مثل آلمان این رله،حفاظت اصلی ترانس به حساب می‌آید . از این رله در حفاظت تانک ترانس نوتر و ترانس داخلی نیز استفاده می‌شود .

رله های ترمیک یا کنترل کننده درجه حرارت ترانس :
قسمت حس کننده حرارت ( ترموکوپل ) می‌تواند در داخل سیم پیچ،روغن و یا روی بدنه ترانس نصب شود و به این طریق درجه حرارت هسته،روعن و یا بدنه ترانس را سنجش کند . در یک ترانس در حال کار،دمای هسته،روغن و بدنه متفاوت است . معمولاً کارحانه سازنده ترانس،منحنی ازدیاد دمای هسته،روغن و بدنه را در یک گراف در اختیار مصرف کننده قرار می‌دهد . در یک نمونه ترانس ردکونکور،اختلاف این سه دما به طور تقریبی حدود ۱۰ درجه است ؛ از همین رو تنظیمات دمای ترمومتر های این سه مورد را با اختلاف ۱۰ درجه نسبت به هم قرار می‌دهند . برای مثال،چنانچه برای راه انداختن فن ها از ترمومتر هسته استفاده شده و تنظیم آن روی ۶۰ در جه قرار گیرد،در خصوص ترمومتر روغن و بدنه همین ترانس می‌باید به ترتیب درجات ۵۰ و ۴۰ منظور شود . برای ترانسفورماتور های خشک و یا راکتورهای غالباً از کنترل کننده حرارتی استفاده نمی‌شود ولی در صورت لزوم می‌توان با قرار دادن ترموکوپل در داخل سیم پیچهای آنها،کنترل حرارتی را بر قرار نمود . این گونه وسایل معمولاً از طریق رله‌های جریانی حفاظت می‌شوند

رله دیفرنسیال :
برای حفاظت ژنراتور،ترانسفورماتور و خطوط یا کابل های کوتاه از رله دیفرنسیال استفاده می‌شود . این رله تفاوت جریانهای ورود و خروج را سنجیده و در صورت وجود تفاوت بین آنها،به عمل در می‌آید با توجه به آنکه جریانهای طرفین ترانس،از طریق،ترانسهای جریان حاصل می‌شود و از آنجائیکه ترانس های جریان با هر مقدار دقت و هم کلاس بودن از لحاظ موقعیت نقطه اشباع با هم تفاوتهایی دارند،بنابراین بروز اختلاف و عمل بی مورد رله محتمل خواهد بود . برای خروج رله از این حالت ناپایداری،مدار را به صورتی تغییر می‌دهند که جریان مجموع یا دور زننده ،مقداری از نیروی جریان عمل کننده را خنثی .

با اندازه ای از شدت حساسیت رله کاسته و حالت پایداری بوجود آید . کویل نگهدارنده عامل این باز دارندگی است و به گونه ای در مدار جریان دور زننده تعبیه می‌شود که نیمی‌از کویل در طرف اول و نیم دیگر در طرف دوم مدار قرار گیرد . با این حساب،آمپر دور این کویل نگهدارنده به دو قسمت تقسیم می‌شود ؛ یکی و دیگری و مجموع این دو متوسط جریان نگهدارنده Restraining Current) ) نیز خواهد بود . هنگامی‌که اتصال کوتاه در خارج از محدوده رله دیفرانسیال رخ مب دهد هر دو جریان ( I1+I2 ) افزایش می‌یابد و از این رو گشتاور کویل نگهدارنده نیز بیشتر شده و و مانع از عمل رله می‌گردد .

حاصل تقسیم جریان عمل کننده یعنی ( I1-I2 ) به متوسط جریان نگهدارنده یعنی(I1+I 2) ثابت است و می‌توان آن را به صورت در صدی بیان نمود و لذا این رله را می‌توان یک رله دیفرانسیل در صدی نامید . به عبارت دیگر،همیشه با مقداری از جریان نگهدارنده می‌توان مقداری از جریان عمل کننده را خنثی و یا کنترل نمود . مرز تعادل این دو نیرو عبارت از خط مستقیمی‌است که با شیب معین در صفحه مختصات دو محور ( I1+I2 )و ( I1-I2 ) رسم میشود و در حقیقت این خط حد واسط دو ناحیه ( عملکرد ) و ( عدم عملکرد ) رله می‌باشد .و حالا این نکته قابل درک است که چرا به این رله ( Biased differencial Relay ) یا رله دیفرانسیل کنترل شده اطلاق می‌شود و این نامگذاری حاکی از آن است که کویل نگهدارنده،همانند یک کویل کنترل کننده ( Biased Coil ) عمل می‌کند .

تنظیم این رله هم در دو قسمت متمایز صورت می‌گیرد ؛
تنظیم جریان پایه برای کویل عمل کننده یا تنظیم مقدار پایه .
تنظیم جریان برای کویل نگهدارنده .
تنظیم جزیان پایه برای کویل عمل کننده به صورت زیر تعریف می‌شود ؛

و این در حالی است که جریان در کویل نگهدارنده برابر صفر باشد .
و تنظیم جریان عمل رله هنگامی‌که از کویل نگهدارنده یا کنترل کننده هم جریانی عبور می‌کند،با رابطه زیر تعریف می‌شود ؛

به عبارت دیگر،مقدار جریانی که رله در آن عمل ( pick up) می‌کند به صورت فرمولی،شکل زیر را خواهد داشت :

برای آن که رله دیفرنسیال عملکرد های به خطا و بی مورد نداشته باشد لازم است که در این تنظیم موارد زیر لحاظ شود ؛

خطاهای ترانس های جریان طرفین .
خطای حاصل از افزایش تپ ترانس ( این افزایش در حقیقت نسبت تبدیل ترانسفورماتور را تغییر می‌دهد ) .
مقاومت سیم های رابط ( این مورد بویژه در رله های دیفرنسیال مورد استفاده در حفاظت کابل هایی که از طول کافی برخوردارند،قابل ملاحظه خواهد بود و به همین دلیل ساختمان و طرح رله های دیفرنسیال کابل،متفاوت از رله های دیفرانسیل ژنراتور یا ترانس می‌باشد . در بخش رله دیفرنسیال طولی به این مسئله پرداخته خواهد شد )

نا پایداری در مقابل اتصال کوتاههای شبکه ( بروز اتصال کوتاههای شدید در شبکه گاهاً پایداری رله را مختل کرده و رله را به عملکرد نا خواسته می‌کشاند .از این رو می‌یابد در صدی از تنظیم را به این مسئله اختصاص داده ) .

معمولاً برای ترانسفورماتور های قدرت،تنظیم جریان عمل کننده با جربان پابه را ۲۰ درصدو تنظیم جریان درصدی رله را ۲۵ در صد قرار می‌دهند .
در یک نمونه رله دیفرنسیال در حالتی که جریان نگهدارنده به کویل مربوطه اعمال نمی‌شود،در حساس ترین حالت آن ( وقتی پایین ترین منحنی انتخاب می‌شود یعنی P=0.3 ) رله با حدود A 4/1 به عمل در می‌آید،اعمال حدود A 3 به کویل نگهدارنده نیز همین نتیجه را دارد . تا اینجا مسئله مربوط به ناحیه افقی منحنی می‌شود و در حقیقت اگر کویل عمل کننده با مقداری کمتر از A 4/1 به عمل در نمی‌آید به علت اصطکاک های داخلی رله و نیروی بازدارنده فنرها می‌باشد که البته در رله های نوع استاتیک این مقدار به مینیمم می‌رسد . با افزایش جریان نگهدارنده تا مرز A 5 ،مقدار جریان کویل عمل کننده نیز فزونی می‌گیرد و به مقدارA 45/1 می‌رسد و جریان نگهدارنده A 7،جریان عمل کننده A 75/1 را نیاز خواهد داشت به همین ترتیب وقتی جریان نگهدارنده به A 15 می‌رسد،جریان عمل کننده به مقدار A 2/4 خواهد دیبد . به این ترتیب با به دست آوردن مقادیر عملکرد رله در آزمایشگاه می‌توان تمام نقاط مرز عملکرد رله و در حقیقت صحت عملکرد آن مطالق منحنی داده شده از طرف کارخانه سازنده را مشاده نمود .

چند نکته در رابطه با رله دیفرنسیال :
به جهت آنکه در ترانس قدرت،جریان ثانویه مطابق با گروه برداری ترانس نسبت به اولیه می‌چرخد،بنابراین یکسان نمودن اندازه جریانهای طرفین رله دیفرنسیال، کفایت نمی‌کند و لازم است از ترانس واسطه یا ترانس تطبیق که همان گروه برداری ترانس قدرت را داشته باشد استفاده کنیم تا چرخش حاصله را جبران نماید .
در ترانس واسطه سرهای مختلفی وجود دارد و این امر به دلیل وجود تپ در ترانس قدرت است . به هنگام عملیات راه اندازی اولیه یک پست لازم است که جریانهای اولیه و ثانویه و اختلاف که همان جریان دیفرانسیال (I1-I2) می‌باشد،در پایین ترین . بالا ترین تپ اندازه گزفته شده و مناست ترین تپ برای ترانس ترانس واسطه انتخاب یشود تا حداقل جریان عمل کننده را داشته باشیم .

رله های دیفرنسیال مغناطیسی،مصرف زیاد تری دارند و مخصوصاً اگر ( I1-I2 ) بهنگام بار زیاد ترانس قابل توجه شود،گرمای زیادی را به رله تحمیل خواهد کرد و ضمناً بدلایلی که گفته شد، ناپایداری رله را افزایش خواهد داد .

بهنگام تحت تانسیون قرار دادن قدرت از آنجا که ثانویه باز بوده و جریان مغناطیس‌کننده فقط در اولیه جاری می‌شود،جریان ( I1-I2 ) افزایش می‌یابد که البته به دلیل کم بودن جریان مغناطیس کننده و تنظیم ۲۵ % جریان ( ‍Pick Up) غالبا عملکردی نخواهیم داشت اما نکته قابل توجه آن است که در هنگام وصل،جریان هجومی‌( Inrush current ) در اولیه خواهیم داشت و این جریان در چند سیکل اول مقدار بالایی دارد و می‌تواند رله را تحریک نماید . اما با در نظر گرفتن آنکه این جریان حاوی هارمونیک های زوج ( بویژه ۲ و ۴ ) می‌باشد،می‌توان با قرار دادن یک واحد حساس به این هارمونیک ها و باز نمودن لحظه ای کنتاکت فرمان فطع ( از طربق یک کنتاکت که بر سر راه کنتاکت فرمان قطع واقع شده باشد )،از عملکرد بی مورد رله دیفرنسیال جلوگیری به عمل آورد . اجازه دا د تا ترانس برقدار شود . این واحد که به واحد هارمونیک گیر ( Harmonic trap ) معروف است در همه رله های دیفرنسیال تعبیه شده است .

رله دیفرنسیال با بالانس ولتاژی :
اساس کار این نوع رله، تقابل و رو در رو قرارگرفتن ولتاژ های آمده از ترانس جریانهای طرفین خط است . برای این کار اولاً مدار به صورت ضربدری بسته می‌شود تا قطب های همنام مقابل هم قرار گیرند و ثانیاً برای تبدیل جریان هر یک از C . T ها به ولتاژ – برای پرهیز از ایجاد افت در طول مدار – از ترانس اکتور ( Trans actor ) استفاده می‌شود این وسیله،جریان آمده از C.T را متناسباً به ولتاژ تبدیل می‌کند . در یک نمونه از آن جریان A 5 به v 125/ 0 تبدیل می‌شود که در سوکت دستگاه،قابل اندازه گیری است و با اندازه گیری ولتاژ مریوطه می‌توان مقدار جریان ورودی را دریافت . در هر حال،آنچه که بین رله های طرفین مبادله می‌شود ولتاژ و گاهاً یک فرکانس کد گذاری شده است که در صورت برابری جریانهای طرفین،در محدوده باند فرکانسی خاصی خئاهد بود و در صورت به هم خوردن بالانس جریانها ( به هنگام بروز اتصلبی کوتاه در مسیر )،فرکانس یا فزکانسهای متفاوتی به طرفین ترسال خواهد شد . معمولاً در هر طرف،واحد های Send , Receive وجود دارد و اطلاعات به سرعت مبادله می‌شود . طبیعی است که در خصوص حفاظت دیفرنسیالی کابل نیازی به ترانس واسطه نخواهد بود و واحد هارمونیک گیر نیز ضرورتی نخواهد داشت .

رله بدنه ترانس ( Transformer Body Relay ) :
در ترانس های قدیمی‌که معمولاً برای آنها از رله دیفرنسیال استفاده نشده است و به خاطر ایجاد حفاظتی در برابر برقدار شدن بدنه آنها که غالباً توسط پرندگان و غیره به صورت اتصال فاز به بدنه به وجود می‌آید از رله بدنه استفاده می‌شود . برای مشخص کردن جریان حاصل از اتصالی،چرخشهای ترانس قدرت از زمین عایق شده و بدنه فقط از یک نقطه زمین می‌گردد و بر سر راه آن ترانس جریان قرار داده می‌شود تا با واسطه یک رله آمپریک (با فرمان قطع سریع)،ترانس بی برق شود . اتصالی احتمالی ولتاژ هایD.C موجود در باکس های واقع بر ترانس با بدنه نیز به همین روش آشکار خواهد شد . در جائیکه از رله دیفرنسیال استفاده شود نیازی به ایزوله کردن ترانس از زمین و استفاده از رله بدنه نخواهد بود .

حفاظت جریانی برای ترانسفورماتور :
معمولاًدر هر دو طرف ترانس قدرت با استفاده از C.T ها رله های اورکانت (برای هر سه فاز) نیز تعبیه می‌شوند و البته این رله ها از جمله حفاظت های اصلی ترانس به حساب نمی‌آیند اما با سایر رله های اورکانت شبکه هماهنگ هستند و در صورت عمل نکردن رله‌های پیش روی خود و پس از گذشت زمان تنظیمی بعمل در می‌آیند . البته از آنجا که در غالب رله‌های اورکانت، واحد جریان زیاد لحظه ای هم وجود دارد،در صورت تنظیم دقیق این واحدها و افزایش ناگهانی جریان به طوری که از حدود تنظیمی‌آنها فراتر رود فرمان قطع سریع خواهند داشت .

رله های رگولاتور ولتاژ:
تپ چنجر قابل عمل زیر بار یکی از اجزا ضروری ترانس قدرت است و برای بکارگیری اتوماتیک آن و بویژه بهنگام کار موازی ترانس ها ،از یک مجموعه رله‌ای استفاده می‌شود. مهمترین این رله ها عبارتند از :
۱- رله ولتمتریک ساده :این رله،ولتاژ فیدر ترانس را می‌بیند و چنانچه ولتاژ از حد پیش بینی شده –که روی رله تنظیم شده است-کمتر شود(برای مثال ولتاژ ترانس تا آن اندازه پایین آمده باشد که با استفاده از رگولاتور ولتاژ غیر قابل جبران باشد)،در آنصورت این رله ،سیستم اتومات رگولاتور را از مدار خارج خواهد کرد. ۲- رله رگولاتور با مبنای جریانی :اساس کار این رله بر این اصل استوار است که با ازدیاد مصرف یا بار ،افت ولتاژ فزونی می‌گیرد .بنابر این پارامتر مبنای کار رله ،جریان و فرمان رله برای رگولاتور ،تغییر ولتاژ(در جهت افزایش یا کاهش)خواهد بود.

۳- رله رگولاتور با مبنای ولتاژی :این رله در صورت کاهش ولتاژ،فرمان افزایش و در صورت عکس آن،فرمان کاهش ولتاژ را به رگولاتور صادر می‌کند.سه گونه تنظیم روی این رله قرار داده می‌شود ؛
(۱)ولتاژ نرمال ترانس که در حقیقت ولتاژ مرجع (reference v. )برای رله می‌باشد.در یک ترانسفورماتور با ثانویه ۲۰ کیلو ولت،وبا یک ترانس ولتاژ (رابط باسبار ۲۰کیلو ولت و رله)،ولتاژ مرجع ،۱۰۰ولت خواهدبود.

(۲) یا محدوده تغییرات ولتاژ به ولتاژ مرجع .در مثال فوق،هر یک کیلو ولت تغییر در ثانویه ،متناسباً یک ولت تغییر در ورودی رله ایجاد می‌کند و چنانچه تنظیم ، یک ولت انتخاب شده باشد ،با کاهش ولتاژ ثانویه ترانس تا مرز ۱۹کیلو ولت،این رله فرمان افزایش وبا افزایش ولتاژ ترانس تا مرز ۲۱کیلو ولت، رله فرمان کاهش ولتاژ را صادر خواهد کرد.بدیهی است که این تنظیم می‌باید باتوجه به افزایش ولتاژ ترانسفورماتور به ازای عمل هر تپ آن بوده و به گونه ای باشد که با تغییرات ولتاژ شبکه ،رگولاتور ولتاژ ،پیوسته فعال نشود.

(۳) رله زمانی :این رله تاخیر زمانی در ارتباط با مدار فرمان رله رگولاتور ولتاژ قرار می‌گیرد و این فرصت را ایجاد می‌کند تا چنانچه در محدوده تصمیم گیری رله برای ارسال فرمان، ولتاژخروجی ترانس به حالت نرمال خود نزدیک شد،از فعالیت بی مورد تپ چنجر جلوگیری شود.
در رله استاتیک جدید،معمولاً”هر دو رله آمپریک و ولتمتریک،بصورت مجتمع و در یک واحد،گرد آمده اند.در چنین طرحی،بدلیل کنار هم بودن پارامترها و استفاده از گیت های رمانی مختلف،دقت عمل رله افزایش می‌یابد.

رله اضافه شار(over flux):
عواملی که در تخریب ترانسفورماتور نقش دارند عبارتند از :
اضافه بارها،جریان های اتصال کوتاه،اضافه ولتاژها و همچنین کاهش فرکانس .
اضافه بار،تلف مس و بالارفتن دما را بدنبال می‌آورد .جریان های اتصال کوتاه نیز هر چند کوتاه مدت هستند اما گرمای زیاد و تنش های مکانیکی ایجاد می‌کنند و وقتی به دفعات تکرارشوند،آسیبهای جدی به سیم پیچ ها وارد می‌سازند و این آسیب در سیکل اول جریان اتصالی بیشترین مقدار خود را دارد و حفاظت خودکار نیز،نمی‌تواند نقشی در رفع آن داشته باشد .اضافه ولتاژهای مرتبت برترانس ها به دو دسته تقسیم می‌شوند ؛اول، اضافه ولتاژهای گذرا که معمولاً ناشی از صاعقه و سوئیچینگ هستند و در صورت خنثی نشدن توسط برقگیرها،به شکل ایمپالس وارد ترانس شده و تاثیرات مخرب خود را باقی می‌گذارند .

دوم،اضافه ولتاژهای فرکانس قدرت هستند که افزایش شار هسته و بدنبال آن، افزایش نامتناسب و بزرگ جریان مغناطیس کننده را بوجود می‌آورند .شار حاصله از ورقه های هسته می‌گذرد و همینطور در ساختمان فلزی بدنه ترانس بطور پراکنده می‌پیچد و در مجموع در قسمتهای انحنادار و نامتقارن سیم پیچ ها ایجاد گرمای شدید می‌کند که در صورت ادامه دار بودن،موجب خرابی عایق ها می‌شود .همین حالت را کاهش فرکانس –که افزایش جریان و افزایش شار را بدنبال دارد-نیز بوجود می‌آورد.

کلا” بنا به ملاحظات اقتصادی،طراحی ترانسفورماتورها به صورتی انجام میشود که مقدار کمی‌اضافه ولتاژ فرکانس قدرت را در دراز مدت تحمل می‌کند اما بکار گرفتن این وسایل در ولتاژهای بالاتر،بویژه اگر با کاهش فرکانس نیز توام شود،نمیتواند ادامه یابد.به همین خاطر،تاثیر این دو پارامتر،در این،رله،به صورت نسبت ولتاژ نامی‌(به صورت پریونیت) سسنجیده می‌شود و چنانچه این نسبت از واحد تجاوز کند،رله به عمل در می‌آید.فرمول پایه به کار گرفته شده در ساختار رله به صورت زیر است ؛

در این رابطه،منظور از ولتاژنامی،بالاترین ولتاژی است که ترانسفورماتور برای آن طراحی شده است.گفتنی است که در این حفاظت، نیاز به عملکرد سریع نبوده و قطع آنی مورد نظر نمی‌باشد،اما چنانچه شرایط غیرعادی حدود یک دقیقه ادامه یابد، جداکردن ترانس ضروری خواهد بود.حفاظت اضافه شار عمدتاً در ترانسسفورماتورهای نیروگاه که بیش از سایربن در معرض وقوع این پدیده هستند کاربرد دارد، گرچه در نظر گرفتن آن برای تمامی‌ترانس های قدرت نیز خالی از حکمت نخواهد بود.

حفاظت باسبار:
در اوایل تاسیس شبکه ها بدلیل توسعه نیافتگی طرح رله ها،لزوما” حفاظت شبکه را کلی در نظر می‌گرفتند و نه موضعی. اما بعدها که حفاظت های مقطعی برای ترانس، کابل و خط در نظر گرفته شد، باسبار هم حفاظت مخصوص به خود را طلب نمود بویژه آنکه باسبارها رفته رفته به صورت نقاط متمرکز قدرت اتصال کوتاه و به ضرورت،به چند قسمت تقسیم شدند و هر قسمت حجم زیادی از قدرت را توزیع می‌کرد و چنانچه اتصالی در یک قسمت اتفاق می‌افتاد،روا نبود که مجموعه باسبار از شبکه خارج شود و خاموشی گسترده ایجاد کند. به این خاطر بود که حفاظت باسبار ،حفاظت ویژه ای شد و امروزه از کیفیت پیشرفته و سریعی برخورداراست به صورتیکه بروز اختلال در کار آن، ممکن است پایداری سیستم رابه خطر اندازد.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
word قابل ویرایش - قیمت 13700 تومان در 73 صفحه
137,000 ریال – خرید و دانلود
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد