بخشی از مقاله


تاريخچه
امروزه تامين گرمايش و سرمايش، لزوم تهويه، مهيا نمودن آب بهداشتی و دفع فاضلاب، ايجاد تمهيداتی بمنظور استفاده از وسايل الکتريکی، روشنايی محيط و قابليت مقابله با خطرات احتمالی نظير آتش سوزی جزء اساسی ترين حقوق طبيعی هر انسانی در گستره دانش و صنعت ساختمان سازی محسوب ميگردد.

از طرف ديگر ارزشمند تر شدن منابع انرژی در دترس، رشد صنعت ساختمان سازی، افزايش هزينه های ساخت و ساز و برجسته تر شدن نقش و اهميت ايجاد شرايط آسايش، وظيفه و اهميت تاسيسات ساختمانی را از نقطه نظر تعريف سيستمهای نوين با راندمان بالا، هزينه ساخت

و انرژی کم، سنگين مينمايد. تدوين استانداردها و ضوابط تاسيساتی، رشد صنعت تاسيسات از جنبه تحقيقاتی، ايجاد يک بازوی مشاوره ای برای توليد کنندگان و بوجود آمدن نقطه اتکاء و اعتماد مصرف کنندگان کالاهای تاسيساتی، از بزرگترين دغدغه های دست اندرکاران اين صنعت محسوب ميگردد. بخش تاسيسات اميدوار است با ادامه اين حرکتها گامهای مهمي در جهت ارتقاء علمي و تجربی جامعه مهندسی کشور برداشته شود.

روشهاي انتقال حرارت
انتقال گرما
علم انتقال گرما به تحلیل آهنگ انتقال گرما در سیستم می‌پردازد. انتقال انرژی از طریق شارش گرما را نمی‌توان مستقیما اندازه‌گیری کرد ولی این انتقال چون به یک کمیت قابل اندازه‌گیری به نام دما ارتباط دارد، دارای مفهوم فیزیکی است.


شرط انتقال حرارت
شرط انتقال حرارت خود به خودی، اختلاف دما است. اگر دو سیستم در حال ارتباط با یکدیگر هم‌دما نباشند، گرما از ناحیهٔ پر دما (گرم) به ناحیهٔ کم دما (سرد) چریان می‌یابد. و این جریان تا زمانی ادامه می‌یابد که دو سیستم هم‌دما شوند.
چون گرما به دلیل وجود گرادیان دمایی شارش می‌یابد، دانستن توزیع دما ضروری است.


دلیل ترمودینامیکی انتقال حرارت
انتقال حرارت از جسم گرم به جسم سرد به دلیل افزایش انتروپی سیستم، خود به خودی است
کاربرد
مسئلهٔ توزیع دما و شارش گرما در بسیاری از شاخه‌های علوم و مهندسی مطرح است. مثلا در طراحی دیگ‌های بخار، چگالنده‌ها (کندانسورها) و رادیاتورها تحلیل انتقال گرما برای محاسبهٔ اندازهٔ آنها لازم است.


روش‌های انتقال گرما
• رسانش
• همرفت (کنوکسیون)
• تشعشع (تابش)
رسانش
• رسانایی الکتریکی یک خاصیت فیزیک مواد
• رسانش یکی از روش‌های انتقال حرارت

همرفت
همرفت یا کنوکسیون یکی از روش‌های انتقال گرما است. همرفت نه تنها در داخل یک سیال، بلکه بین دو جسم که یکی از آنها سیال باشد نیز اتفاق می‌افتد. فرآیند رسانش بین یک سطح جامد و یک سیال در حال حرکت، همرفت نامیده می‌شود. حرکت سیال می‌تواند طبیعی یا با اعمال نیروی خارجی باشد.


همرفت طبیعی
هنگامی که مایعات گرم می‌شوند، چگالی اکثر آنها کاهش می‌یابد. بنابراین در اثر گرانش مایعاتی که در نزدیکی سطح جامد قرار دارند، گرمتر شده و بالا می‌روند و مایعات سردتر جای آنها را می‌گیرند. این نوع همرفت را همرفت طبیعی می‌نامند.


همرفت اجباری (همرفت واداشته)
هنگامی که سیالی تحت یک گرادیان فشاری قرار گیرد، طبق قانون مکانیک شاره‌ها وادار به حرکت می‌شود. همرفت ناشی از این حرکت را همرفت اجباری می‌نامند.

تشعشع
به انتشار امواج الکترومغناطیسی از اجسام، تشعشع (تابش) گفته می‌شود که یکی از روش‌های انتقال انرژی (انتقال حرارت) یا انتقال اطلاعات (امواج رادیویی) است. بسته به طول موج امواج، می‌توان آنها را به صورت زیر دسته‌بندی کرد:


• امواج کیهانی
• پرتو گاما
• اشعه ایکس
• ماورای بنفش
• نور مرئی
• فروسرخ
• رادیویی
جستارهای وابسته
تابش یونی (تشعشع هسته‌ای)


جريان سيال درلوله ها
سيالات موادي هستند كه شكل ظرفي را كه درون آنها قرار دارند، به خود مي‌گيرند و لذا براي انتقال آنها، به محيطي واسطه نياز داريم. بشر از ديرگاه براي انتقال سيال بصورت پيوسته از لوله استفاده مي‌نمود. لوله ها در طولها، اشكال و اندازه‌هاي مختلف بكار ميروند . آيا تا به حال به شكل لوله ها توجه كرده‌ايد ؟ زياد شدن طول لوله يا قطر لوله ها چه اثري بر روي انتقال سيال و ميزان مصرف انرژي خواهد گذاشت؟ چرا لوله ها را به صورت مستقيم استفاده مي‌كنند؟ اگر لوله ها را خم كنند يا حتي بپيچانندچه تغييري در جريان مشاهده مي‌كنيم؟


گاهي از اوقات لوله حاوي سيال را گرم و يا سرد مي‌كنند و با اين عمل ، از لوله يك مبادله گر حرارتي ميسازند. با توجه به اين موضوع به سوالات بالا چنين پاسخ مي‌دهيم.
لوله در اينجا مجرايي است كه سيال در داخل آن جريان مييابد و همزمان گرم يا سرد نيز مي‌شود. هنگامي كه سيال لزجي وارد مجرايي ميشود ، لايه مرزي، در طول ديواره تشكيل خواهد شد. لايه مرزي بتدريج در كل سطح مقطع مجرا توسعه مييابد و از آن به بعد به جريان، كاملا توسعه يافته (فراگير ) گفته مي‌شود. معمولا اگر طول لوله بلندتر از 10 برابر قطر لوله باشد آنگاه جريان توسعه يافته شده است.


اگر ديواره مجرا گرم يا سرد شود، لايه مرزي گرمايي نيز در طول ديواره مجرا توسعه خواهد يافت.
اگر گرمايش يا سرمايش، از ورودي مجرا شروع شود ، هم نمودار توزيع سرعت و هم نمودار توزيع دما بصورت همزمان توسعه مي‌يابند. مسأله انتقال گرما در اين شرايط ، به مسأله طول ورودي هيدرو ديناميكي و گرمايي تبديل مي‌شود كه در بر گيرنده چهاذ حالت مختلف است و به اينكه هر كدام از دو لايه مرزي سرعت و دما در چه وضعيتي بسر مي‌برند(( كاملا توسعه يافته و يا در حال توسعه)) بستگي دارد.


در ناحيه كاملا توسعه يافته در داخل لوله ، عملا لايه مرزي وجود ندارد چون دو ناحيه مختلف، كه يكي با سرعت جريان آزاد و ديگري تحت تاثير ديواره باشد ، وجود نخواهد داشت و در سرتاسر لوله ، تمام نواحي تحت تاثير ديواره قرار دارند. از آنجا لايه مرزي، مقاومتي در برابر انتقال حرارت است،

لذا بيشترين ميزان ضريب انتقال حرارت جابجايي در ابتداي لوله، يعني در جايي كه ضخامت لايه مرزي صفر است، مشاهده مي‌شود. مقدار اين ضريب به تدريج همزمان با افزايش ضخامت لايه مرزي و در نتيجه افزايش مقاومت در برابر انتقال حرارت، كاهش مي‌يابد تا به مقدار آن در ناحيه كاملا توسعه يافته برسد كه تقريبا مقداري ثابت است.


حال اثر تغيير شكلي خاص در لوله را روي ويژگي‌هاي سرعت و انتقال حرارت بررسي مي‌كنيم.
كويلهاي حلزوني و مارپيچ ، لوله‌هاي خميده اي هستند كه بعنوان مبادله گرهاي گرماي لوله خميده در كاربردهاي مختلف ايتفاده مي‌شوند.


بياييد كويلهاي مارپيچ يا حلزوني را تحليل كنيم. سيالي را در درون اين لوله ها در نظر مي‌گيريم. آنچه در ابتدا نظرمان را به خود جلب مي‌كند اينست كه چون لوله ها بصورت مارپيچ (دايروي) پيچيده شده‌اند، لذا در اثر حركت دوراني و محوري، نيرويي به آنها وارد مي‌شود و اين خود باعث مي‌شود تا شتاب سيال صفر نشود، حال سؤالي كه اينجا مطرح مي‌شود اينست

كه با وجود اين نيرو، آيا جريان داخل مارپيچ، كاملا توسعه يافته است يا جرياني در حال توسعه است و پروفايل سرعت تغيير مي‌كند. آيا دليل بيشتر بودن h (ضريب انتقال حرارت جابجايي) در ناحيه، نيبت به لوله مستقيم نيز،اين است(مي‌دانيم كه h در ناحيه كاملا توسعه يافته كوچكتر از h در ناحيه در حال توسعه است)؟ يا هيچكدام از اينها صحيح نيست و دليل بزرگتر بودن ضريب انتقال حرارت جابجايي در اين ناحيه چيز ديگري است؟


در اولين نگاه بنظر مي رسد كه جريان داخل كويل كاملا توسعه يافته نيست و دليل بيشتر بودن h نيز همين است. با اين حساب اين جمله را چگونه توجيه كنيم كه : داده‌هاي محدود راجع به جريان آشفته در حال توسعه ، نشان مي‌دهد كه جريان ، در نيم دور اول كويل كاملا توسعه مي‌يابد؟ اگر اينطور باشد پس دليل افزايش h چيست؟



جريان داخل لوله را در مختصات استوانه‌اي در نظر بگيريد كه داراي سه مولفه Ө ,z ,r است. هنگاميكه لوله مستقيم است، سرعت در دو راستاي Ө ,r صفر بوده و فقط در راستاي z سرعت داريم : و هنگاميكه لوله را خميده يا مارپيچ مي‌كنيم، بدليل وجود نيروي گريز از مركز و شتاب حاصل از آن (وساير مولفه‌هاي شتاب ايجاد شده)،

سرعت مولفه ديگري علاوه بر مي‌يابد: كه تابع r شعاع انحنا مارپيچ نيز هست. اين مولفه جديد سرعت ، ميل دارد حركت چرخشي (Spiral) به سيال بدهد، يعني سيال همزمان كه در طول لوله به جلو مي‌رود، حول خط مركزي لوله دوران هم مي‌كند اما عليرغم ميلش هميشه موفق به اين كار نمي‌شود.

بنابراين نيروي گريز از مركز عامل توسعه يافته نشدن جريان نخواهد بود بلكه در زماني كه بيشترين اثر را بر روي رژيم جريان بگذارد، آن را به سمت ناپايداري مي‌برد (تا پايداري جريان مصادف است با آشفته شدن آن) و حركتي گردشي به سيال مي‌دهد و بهر حال ، وجود نيروي گريز از مركز با اينكه جريان در نيم دور اول كويل كاملا توسعه يافته شود، هيچ منافاتي باهم ندارد.


باز هم اين سوال باقي مي‌ماند كه دليل افزايش h چيست؟ مي‌دانيم كه ضريب انتقال حرارت در جريان آشفته(Turbulent) و نيز جريان آشوبناك (Chaotic) ، بيش از ضريب انتقال حرارت در جريان آرام است، پس هر ابزاري كه كمك كندجريان به سمت آشفته شدن يا آشوبناك شدن پيش رود باعث افزايش ضريب انتقال حرارت جابجايي مي‌شود، خواه در مورد جريان در داخل لوله و خواه در مورد جريان بر روي لوله . وقتي لوله را بصورت مارپيچ در مي‌آوريم با افزودن يك مولفه سرعت كه مي‌تواند پايداري جريان را در معرض خطر قرار دهد،جريان بسمت آشفته شدن پيش برده و باعث افزايش h شده‌ايم.

اينكه كويل ما بصورت افقي يا قائم قرار گيرد نيز بر روي ضريب انتقال حرارت جابجايي ما موثر است بخصوص در سمت خارج لوله چون انتقال حرارت باعث تغيير چگالي سيال و ايجاد يك حركت انتقالي در اثر نيروي ارشميدس مي‌شود كه اين حركت اگر تقويت شده، به سمت توربولان شدن پيش ميرود و يا روي حركت كلي جريان تاثير گذاشته، انرا به سمت توربولان شدن پيش برد، باعث افزايش ضريب انتقال حرارت جابجايي (h) مي‌شود.


بحث ديگري كه امروزه به منظور افزايش h بر همين مبنا مطرح است بحث استفاده از مبدل‌هاي حرارتي آشوبناك است. به اين معني كه براي افزايش ضريب انتقال حرارت و غالبا در كويلها، جريان را آشوبناك مي‌كنند. عقيده اين گروه بر اين است كه توربولان (آشفتگي) حالتي خاص از پديده آشوب Chaos است و نيز در اين جريان ميزان تلفات انري بالاست. آنچه مسلم است و تجربه نيز گواه آن، اينست كه بروز هر دو پدرده (آشفتگي و آشوبناكي) در جريان سيال باعث افزايش ضريب انتقال حرارت جابجايي مي‌شود.


نكات كليدي :
1- ضخامت لايه مرزي به تدريج در طول لوله افزايش مي‌يابد و بعد از به هم پيوستن لايه هاي مرزي اطراف لوله جريان كاملا توسعه يافته مي‌شود. هرچند بصورت نظري، نزديك شدن به نمودار توزيع سرعت كاملا توسعه يافته به شكل مجانبي است و تعيين محلي معين و دقيق كه در آنجا جريان در مجرا كاملا توسعه يافته است، غير ممكن مي‌باشد. با اينحال براي تمام كاربردهاي عملي طول ورودي هيدروديناميكي محدود است.
2- به فاصله‌اي كه در طي آن سرعت كاملا توسعه يافته مي‌شود طول ورودي هيدروديناميكي ميگويند.

تعريف وتقسيم بندي عايق ها
عايق ها به اجسامي مي گويند كه داراي ضريب هدايت گرمائي خيلي كم مي باشند يا K در آنها خيلي كوجك و بر عكس ( ضريب مقاومت گرمائي ) در آنها زياد است.
بطور كلي هادي مطلق يا عايق مطلق وجود ندارد و در واقع هادي يا عايق بودن اجسام نسبي است . همانطور كه فلزات داراي ضريب هدايت زيادي است ، بعضي اجسام مانند چوب پنبه داراي ضريب هدايت گرمائي كم و بر عكس مقاومت گرمائي زياد هستند.


لذا اين اجسام را عايق مي نامند ، چنانچه به نظريه ساختمان مولكولي اجسام مراجعه كنيم مشاهده مي كنيم در بين مولكولهاي اجسام مقداري فواصل مولكولي وجود دارد كه در آن حبابهاي هوا يا گازهاي ديگر قرار گرفته است ، كه هر قدر اين حبابها بزرگتر باشد ، ضريب عابق بودن اجسام بيشتر و بر عكس ضريب هدايت آنها كمتر است.

دما و رطوبت و وزن مخصوص در تغيير هدايت و عايق بودن اجسام دخالت دارند و بدينصورت كه هر قدر دماي جسمي بيشتر شود ، ضريب هدايت اجسام نيز بالاتر باشد ، ضريب عايق بودن اجسام بيشتر مي نمايد . و رطوبت نيز موجب بالا بودن ضريب هدايت و كم كردن ضريب عايق بودن اجسام مي گردد. و همينطور هر قدر و وزن مخصوص جسمي زيادتر باشد ضريب هدايت آن بيشتر و ضريب عايق بودن آن كمتر است . و برعكس اين نظريه در مورد وزن مخصوص براي همه اجسام صادق نيست. عايق ها بطور كلي سه دسته تقسيم مي شوند.



2- عايق هاي گرمائي هدايتي
عايق هاي گرمائي چنانچه بيان شد ضريب هدايت آنها K كم و بر عكس ضريب مقاومت آنها زياد است جدول تعدادي از عايق هاي متداول را كه در تاسيسات حرارتي و برودتي بكار برده مي شود و يا در مخزن و لوله ها و كانالهاي عبور آب و بخار و گازهاي تبريد بكار برده مي شوند.

3- عايقهاي گرمائي تشعشعي يا عايق هاي فلزي
اين عايق ها كه در سطح ديوارها و سقف ساختمان بكار برده مي شود ، كه از صفحات فلزي براق نظير آلومينيوم و برنز و مس مي باشند و عمل آنها انعكاس مقداري اشعه آفتاب و جلوگيري از نفوذ آنها به داخل سطوح ساختماني نظير ديوار و سقف مي باشد.

بدين ترتيب گرماي منتقله از اشعه آفتاب را تقليل مي دهد ، چنانچه در قسمت انتقال گرما از طريق تشعشع مفصلاً بيان شد و بر عكس موجب نفوذ اشعه آفتاب مي شود ، كه در محاسبات باربرودتي در تهويه مطبوع از آن استفاده مي شود.

لذا با رنگ كردن سطوح ساختماني ( ديوار و سقف ) به رنگهاي روشن ( خصوصاً سفيد ) مي توان يك عايق تشعشعي در سطح ايجاد و از نفوذ گرماي اشعه آفتاب كاست.

4- عايق هاي رطوبتي
چنانچه قبلا بيان شد رطوبت موجب بالا بردن ضريب هدايت و تقليل ضريب عايق بودن عايق هاي هدايتي مي شود.
لذا براي جلوگيري از نفوذ رطوبت در عايق هاي سطوح ساختماني ( نظير ديوار ، سقف و كهنه ) و عايق لوله هاي حامل سيال گرم يا سرد و همچنين براي جلوگيري از نفوذ رطوبت زمين به لوله هاي فلزي و زنگ زدگي آنها مي بايستي از عايق هاي رطوبتي استفاده كرد.

عايقهاي رطوبتي عايق هائي هستند كه در نفوذ رطوبت از يك طرف به طرف ديگر جلوگيري مي نمايد . تعدادي از این عایق ها که در تاسیسات به کار برده می شوند، عبارت اند از کلیه اجسامی که به قیر آغشته شده باشند، ماندد گونی کاغذ یا پارچه غیر اندود و همچنین مواد لاستیکی و پلاستیکی و نظایر آنها ، به عنوان مثال روی عایق های پشم شیشه و معدنی و همچنین مواد لاستیکی و پلاستیکی و نظایر آنها از مواد قیری یا خودش استفاده می شود.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید