بخشی از مقاله
نور و امواج الكترومغناطيس
مقدمه
امروزه مي دانيم كه نور يك موج الكترمغناطيسي است و بخش بسيار كوچكي از طيف الكترمغناطيسي را تشكيل مي دهد. بنابراين براي شناخت نور بايستي به بررسي امواج الكترومغناطيسي پرداخت. اما از آنجاييكه مكانيك كلاسيك قادر به توضيح كامل امواج
الكترومغناطيسي نيست، الزاماً بايستي به مكانيك كوانتوم مراجعه كرد. اما قبل از وارد شدن به مكانيك كوانتوم لازم است با برخي از خواص نور آشنا شد و دليل نارسايي مكانيك كلاسيك را دانست. لذا در اين فصل دانش نور را تا پيش از ارائه شدن رابطه ي مشهور پلانك بررسي مي كنيم و در فصل جداگانه اي خواص امواج الكترومغناطيسي بعد از مكانيك كوانتوم و نسبيت بررسي خواهد شد.
خواص نور
نخستين مسئله اي مهم جلوه مي كرد اين بود كه نور چيست؟ از آنجاييكه عامل ديدن بود و در تاريكي چيزي ديده نمي شد، سئوال اين بود كه نور چيست؟ چرا مي بينيم و نور چگونه و توسط چه چيرزي توليد مي شود؟ بالاخره اين نظريه پيروز شد كه نور توسط اجسام منير نظير خورشيد و مشعل توليد مي شود. بعد از آن مسئله انعكاس نور مورد توجه قرار گرفت و اينكه چرا برخي از اجسام بهتر از ساير اجسام نور را باز تابش مي كنند؟ چرا نور از برخي اجسام عبور مي كند و از برخي ديگر عبور نمي كند؟ چرا نور علاوه بر آنكه سبب ديدن است موجب گرم شدن نيز مي شود؟ نور چگونه منتقل مي شود؟ سرعت آن چقدر است؟ و سرانجام ماهيت نور و نحوه ي انتقال آن چيست؟
نخستين آزمايش مهم نور توسط نيوتن در سال 1666 انجام شد. وي يك دسته اشعه نور خورشيد را كه از شكاف باريكي وارد اتاق تاريكي شده بود، بطور مايل بر وجه يك منشور شيشه اي مثلث القاعده اي تابانيد. اين دسته هنگام ورود در شيشه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در همان جهت منحرف شد.
نيوتن دسته اشعه خارج شده را بر يك پرده سفيد انداخت. وي مشاهده كرد كه به جاي تشكيل يك لكه سفيد نور، دسته اشعه در نوار رنگيني كه به ترتيب مركب از رنگهاي سرخ، نارنجي، زرد، سبز، آبي و بنفش است پراكنده شده است. نوار رنگيني را كه از مولفه هاي نور تشكيل مي شود، طيف مي نامند.
نيوتن نظر داد كه نور از ذرات بسيار ريز - دانه ها - تشكيل مي شود كه با سرعت زياد حركت مي كند. علاوه بر آن به نظر نيوتن نور در محيط غليظ باسرعت بيشتري حركت مي كند. اگر نظر نيوتن در مورد سرعت نور درست مي بود مي بايست سرعت نور در شيشه بيشتر از هوا باشد كه مي دانيم درست نيست.
هويگنس در سال 1690 رساله اي در شرح نظريه موجي نور منتشر كرد. طبق اصل هويگنس حركت نور به صورت موجي است و از چشمه هاي نوري به تمام جهات پخش مي شود. هويگنس با به كاربردن امواج اصلي و موجك هاي ثانوي قوانين بازتاب و شكست را تشريح كرد. هويگنس نظر داد كه سرعت نور در محيط هاي شكست دهنده كمتر از سرعت نور در هوا است كه درست است.
پيروزي نظريه موجي نور
نظريه دانه اي نيوتن هرچند بعضي از سئوالات را پاسخ مي گفت، اما باز هم پرسش هايي وجود داشت كه اين نظريه نمي توانست براي آنها جواب قانع كننده اي ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد بيشتر منحرف مي شوند؟ چرا دو دسته اشعه ي نور مي توانند بدون آنكه بر هم اثر بگذارند، از هم بگذرند؟
اما بر اساس نظريه موجي هويگنس، دو دسته اشعه ي نوراني مي توانند بدون آنكه مزاحمتي براي هم فراهم كنند از يكديگر بگرند. هويگنس نمي دانست كه نور موج عرضي است يا موچ طولي، و طول موج هاي نور مرئي را نيز نمي دانست. ولي چون نور در خلاء نيز منتشر مي شود، وي مجبور شد محيط يا رسانه حاملي براي اين انتشار اين امواج در نظر بگيرد. هويگنس تصور مي كرد كه اين امواج توسط اتر منتقل مي شوند. به نظر وي اتر محيط و مايع خيلي سبكي است و همه جا، حتي ميان ذرات ماده نيز وجود دارد.
نظري هويگنس نيز بطور كامل رضايت بخش نبود، زيرا نمي توانست توضيح دهد كه چرا سايه ي واضح تشكيل مي شود، يا چرا امواج نور نمي توانند مانند امواج صوت از موانع بگذرند؟
نظريه موجي و دانه اي نور بيش از يكصد سال با هم مجادله كردند، اما نظريه دانه اي نيوتن بيشتر مورد قبول واقع شده بود، زيرا از يكطرف منطقي تر به نظر مي رسيد و از طرف ديگر با نام نيوتن همراه بود. با وجود اين هر دو نظريه فاقد شواهد پشتوانه اي قوي بودند. تا آنكه بتدريج دلايلي بر موجي بودن نور ارائه گرديد
لئونارد اويلر فكر امواج دوره اي را تكميل كرد، همچنين دليل رنگ هاي گوناگون را مربوط به تفاوت طول موج آنها دانست. و اين گام بلندي بود. در سال 1800 ويليام هرشل آزمايش بسيار ساده اما جالبي انجام داد. وي يك دسته اشعه ي نور خورشيد را از منشور عبور داد و در ماوراي انتهاي سرخ طيف حاصل دماسنجي نصب كرد. جيوه در دما سنج بالا رفت، بدين ترتيب هرشل تابشي را كشف كرد كه به تابش زير قرمز مشهور شد.
در همين هنگام يوهان ويلهلم ريتر انتهاي ديگر طيف را كشف كرد. وي دريافت كه نيترات نقره كه تحت تاثير نور آبي يا بنفش به نقره ي فلزي تجزيه و رنگ آن تيره مي شود، اگر در وراي طيف، در جاييكه بنفش محو مي شود، نيترات نقره قرار گيرد حتي زودتر تجزيه مي شود. ريتر نوري را كشف كرد كه ما اكنون آن را فوق بنفش مي ناميم. بدين ترتيب هرشل و ريتر از مرزهاي طيف مرئي گذشتند و در قلمروهاي جديد تابش پا نهادند. در اين هنگام دلايل جديدي براي موجي بودن نور توسط يانگ و فرنل ارائه گرديد.
در سال 1801 توماس يانگ دست به آزمايش بسيار مهمي زد. وي يك دسه اشعه ي باريك نور را از دو سوراخ نزديك بهم گذارانيد و بر پرده اي كه در عقب اين سوراخ نصب كرده بود تابانيد. احتمال مي رفت كه اگر نور از ذرات تشكيل شده باشند، محل تلاقي دو دسته اشعه اي كه از سوراخها عبور كرده اند، بر روي پرده روشن تر از جاهاي ديگر باشد. اما نتيجه اي كه يانگ به دست آورد چيزي ديگر بود. بر روي پرده يك گروه نوارهاي روشن تشكيل شده بود كه هر يك به وسيله ي يك نوار تاريك از ديگري جدا مي شد. اين پديده به سهولت با نظريه موجي نور توضيح داده شد.
نوار روشن نشان دهنده ي تقويت امواج يكي از دسته ها به وسيله ي امواج دسته ي ديگر است. به گفته ي ديگر، هر جا كه دو موج همفاز شوند، بر يكديگر افزوده مي شوند و يكديگر را تشديد مي كنند. از طرف ديگر نوارهاي تاريك نشان دهنده ي جاهايي است كه امواج در فاز مقابلند، در نتيجه يكديگر را خنثي مي كنند. اگر چه يانگ بارها تاكيد كرد كه برداشت هايش ريشه در پژوهش هاي نيوتن دارد، اما به سختي مورد حمله قرار گرفت و نظريات وي خالي از هر گونه ارزش تلقي شد. با اين وجود يانگ طول موج هاي متفاوت نور مرئي را اندازه گرفت.
در سال 1814 ژان فرنل بي خبر از كوششهاي يانگ مفاهيم توصيف موجي هويگنس و اصل تداخل را با هم تركيب كرد و اظهار داشت: ارتعاشات يك موج درخشان را در هر يك از نقاط آن مي توان به عنوان مجموع حركت هاي بنيادي دانست كه به آن نقطه مي رسند. بر اثر انتقادهاي شديد طرفداران نيوتن، فرنل تاكيدي رياضي يافت. وي توانست نقش هاي پراش ناشي از موانع و روزنه هاي گوناگون را محاسبه كند و به طور رضايت بخشي انتشار مستقيم نور را در محيط هاي همسانگرد و همگن توضيح دهد. بدينسان انتقاد عمده ي طرفداران نيوتن را نسبت به نظريه موجي بي اثر كند. هنگاميكه فرنل به تقدم يانگ در اصل تداخل پي برد، هرچند اندكي مايوس شد، اما نامه اي به يانگ نوشت و احساس آرامش خود را از هم راي بودن با او ابراز داشت.
قبل از ادامه ي بحث در مورد كارهاي فرنل لازم است موج طولي و موج عرضي را تعريف كنيم. در مجو طولي جهت انتشار با جهت ارتعاش يكي هستند. نظير نوسان يك فنر. اما در موج عرضي جهت ارتعاش بر جهت انتشار عمود است، نظير موج بر سطح آب كه نوسان و انتشار عمود بر هم هستند.
فرنل تصور مي كرد امواج نور، امواج طولي هستند. اما تصور موج طولي نمي توانست خاصيت قطبش نور را توجيه كند. فرنل و يانگ چندين سال با اين مسئله درگير بودند تا سرانجام يانگ اظهار داشت كه ممكن است ارتعاش اتري همانند موجي در يك ريسمان عرضي باشد. ولي امواج عرضي انها در يك محيط مادي منتقل شوند. از طرفي ديگر با توجه به سرعت نور ( كه در آنزمان مقدار آن را نمي دانستند ولي مي دانستند كه فوق العاده زياد است)، اتر نمي توانست گاز يا مايع باتشد و بايد جامد و در عين حال خيلي صلب باشد حتي مي بايست صلب تر از فولاد باشد. از اين گذشته اتر مي بايست در تمام مواد نفوذ كند، يعني نه تنها در فضا، بلكه بايد در بتواند گازها، آب، شيشه و حتي در چشم ها نفوذ كند، زيرا نور وارد چشم نيز مي شود. علاوه بر اين اتر نبايستي هيچگونه اصطكاكي داشته باشد و مانع بهم خوردن پلك ها گردد. با وجود اين با تمام مشكلاتي كه اتر داشت براي توجيه موجي بودن نور مورد قبول واقع شد. بدين ترتيب در سال 1825 نظريه موجي نور مورد قبول واقع شد و نظريه دانه اي نيوتن طرفداران چنداني نداشت .
محاسبه سرعت نور
اولين كسي كه براي محاسبه ي سرعت نور اقدام كرد، گاليله بود. وي به اتفاق همكارش براي اندازه گيري سرعت نور اقدام كردند. روش كار به اين طريق بود كه همكار گاليله در حاليكه فانوسي در دست داشت بالاي تپه اي ايستاده بود و گاليله بالاي تپه اي ديگر. هر دو با خود فانوسي داشتند كه روي آن را پوشانده بودند. دستيار وي به مجرد آنكه نور گاليله را مي ديد، با برداشتن پرده از روي فانوس خود به گاليله علامت مي داد. گاليله اين آزمايش را با فواصل بيشتر و بيشتر تكرار كرد، اما نتوانست اختلاف زماني بين برداشتن پرده از روي فانوس خود و دستيارش به دست آورد و سرانجام گفت كه سرعت نور خيلي زياد است.
نخستين بار سرعت نور در سال 1676 توسط رومر (Romer) با استفاده از ماه گرفتگي محاسبه شد و معلوم گشت كه سرعت نور نيز محدود است. عددي را كه رومر به دست آورد 215 هزار كيلومتر بر ثانيه بود. اين عدد آنقدر بزرگ بود كه معاصران وي آن را باور نمي كردنددر سال 1726 برادلي با استفاده از تغيير وضعيت ستارگان نسبت به زمين سرعت نور را محاسبه كرد و عدد سيصد هزار كيلومتر بر ثانيه را به دست آورد.
نخستين بار فيزيو با ستفاده از روش غير نجومي و اصلاح روش گاليله سرعت نور اندازه گيري كرد و مقدار آن را سيصد و سيزده هزار كيلومتر بر ثانيه به دست آورد. بتدريج همراه با پيشرفت وسائل اندازه گيري هاي زيادي انجام شد و امروزه مقدار سيصد هزار كيلومتر بر ثانيه پذيرفته شده است .
در زمان فرنل اين سئوال مطرح بود كه آيا حركت زمين در ميان اتر موجب ايجاد اختلافي قابل مشاهده بين نور چشمه ي زميني و چشمه هاي فرازميني مي شود يا نه؟ آراگو به طور تجربي دست به آزمايش زد و دريافت كه هيچگونه اختلافت قابل مشاهده اي در اين زمينه وجود ندارد. رفتار نور چنان بود كه گويي زمين نسبت به اتر بي حركت است.
فرنل براي توضيح آن اظهار داشت كه نور هنگام عبور از يك ماده ي شفاف متحرك كشيده مي شود و رابطه زير را ارائه داد:
v=c/n + or - vw(1-1/n^2)
كه در آن v=c/n , vw سرعت نور در يك محيط غليظ مثلاً آب است و سرعت آب و جمله ي بعدي به دليل حركت آب نسبت به وجود مي آيد.
در هر محيط مادي سرعت نور و طول موج آن مقدارشان از مقدار خلا كمتر است كميتي كه در هر محيطي ثابت مي ماند فركانس نور هست. فركانس نور با طول موجش نسبت عكس دارد:
(V=F L) كه در آن F معرف فركانس و L معرف طول موج و V معرف سرعت نور در محيط مادي مي باشد .
در اپتيك خواص محيط در يك طول امواج را مي توان توسط يك پارامتر يعني نسبت سرعت نور در خلا به سرعت نور در محيط توصيف نماييم. اين پارامتر ضريب شكست نام دارد.
(n=c/v) بنابر اين در يك محيط مادي داريم (V=F L ) كه در اين رابطه (n) اين ضريب شكست تنها كميتي است كه براي محاسبه رفتار نور در محيط مورد نياز هست. از آنجايي كه سرعت نور در محيط هاي مختلف متفاوت است ،تعيين مسير پيشروي نور رديايي پرتو) كه از ميان محيط هاي مختلف طي مسير مي كند مشكل مي باشد.
نور و الكترومغناطيس
همزنان با تلاشهاي يانگ و فرنل فارادي، اورستد، آمپر و عده اي ديگر از فيزيكدانان روي پديده هاي الكتريكي و مغناطيسي و وابستگي آنها كار مي كردند كه ظاهراً هيچ ربطي به نور نداشت. اما بعدها مشخص گرديد كه الكتريسيته و مغناطيس و نور از هم جدا نيستند. به همين دليل در اينجا اشاره اي كوتاه به الكترسيسته و مغناطيس داريم و سپس امواج الكترومغناطيسي را بيان خواهيم كرد كه نور بخش بسيار كوچكي از آن است.
نيروي الكتريكي
دو جسم كه داراي بار الكتريكي باشند بر يكديگر نيرو وارد مي كنند. كولن تحت تاثير قانون جهاني گرانش نيوتن مقدار نيرويي را كه اجسام باردار بر يكديگر وارد مي كنند به طور رياضي بيان كرد كه طبق آن اين مقدار با حاصلضرب بارها متناسب و با مجذور فاصله نسبت عكس دارد.
F=kqQ/r^2
بين نيروي گرانش و نيروي الكتريكي دو اختلاف وجود دارد:
اول اينكه گرانش همواره جاذبه است. در حاليكه نيروي الكتريكي مي تواند جاذبه يا دافعه باشد. دو بار الكتريكي همنام يكديگر را دفع مي كنند و دو بار الكتريكي غير همنام يكديگر را جذب مي كنند.
اختلاف ديگر نيروهاي الكتريكي و گرانشي در مقدار آنها است. به عنوان مثال نيروي الكتريكي كه دو الكترون به يكديگر وارد مي كنند، تقريبا هزار ميليارد ميليار ميليارد برابر نيروي گرانشي است كه اين دو الكترون برهم وارد مي كنند.
كولن پس از ارائه قانون الكتريكي خود، در صدد تهيه قانوني براي نيروي مغناطيسي برآمد. كولن براي نيروي مغناطيسي فرمولي مشابه با نيروي الكتريكي به دست آورد كه مورد توجه فيزيكدانان واقع نشد. اما پس از كشف ارتباط متقابل ميدانهاي الكتريكي و مغناطيسي، مشخص شد كه اين دو ميدان مستقل از هم نيستند. كه آن را نيروي الكترومغناطيسي مي نامند. برد اين نيرو نيز بينهايت است.
الكترومغناطيس
مبدا علم الكتريسيته به مشاهده معروف تالس ملطي در 600 سال قبل از ميلاد بر ميگردد. در آن زمان تالس متوجه شد كه يك تكه كهرباي مالش داده شده خرده هاي كاغذ را ميربايد. از طرف ديگر مبدا علم مغناطيس به مشاهده اين واقعيت برميگردد كه بعضي از سنگها (يعني سنگهاي ماگنتيت) بطور طبيعي آهن را جذب ميكند. اين دو علم تا سال 1199-1820 به موازات هم تكامل مييافتند.
در سال 1199-1820 هانس كريستان اورستد (1777-1851) مشاهده كرد كه جريان الكتريكي در يك سيستم ميتواند عقربه قطب نماي مغناطيسي را تحت تاثير قرار دهد. بدين ترتيب الكترومغناطيس به عنوان يك علم مطرح شد. اين علم جديد توسط بسياري از پژوهشگران كه مهمترين آنان مايكل فاراده بود تكامل بيشتري يافت.
جيمز كلارك ماكسول قوانين الكترومغناطيس را به شكلي كه امروزه ميشناسيم، در آورد. اين قوانين كه معادلات ماكسول ناميده ميشوند، همان نقشي را در الكترومغناطيس دارند كه قوانين حركت و گرانش در مكانيك دارا هستند
در مكانيك كلاسيك و ترموديناميك تلاش ما بر اين است كه كوتاهترين وجمع و جورترين معادلات يا قوانين را كه يك موضع را تا حد امكان به طور كامل تعريف ميكنند معرفي كنيم. در مكانيك به قوانين حركت نيوتن و قوانين وابسته به آنها ، مانند قانون گرانش نيوتن، و در ترموديناميك به سه قانون اساسي ترموديناميك رسيديم. در مورد الكترومغناطيس ، معادلات ماكسول به عنوان مبنا تعريف ميشود. به عبارت ديگر ميتوان گفت كه معادلات ماكسول توصيف كاملي از الكترومغناطيس به دست ميدهد و علاوه برآن اپتيك را به صورت جزء مكمل الكترومغناطيس پايه گذاري ميكند. به ويژه اين معادلات به ما امكان خواهد داد تا ثابت كنيم كه سرعت نور در فضاي آزاد طبق رابطه :
(C=1/sqr(M.E.))
به كميتهاي صرفا الكتريكي و مغناطيسي مربوط ميشود .
يكي از نتايج بسيار مهم معادلات ماكسول ، مفهوم طيف الكترومغناطيسي است كه حاصل كشف تجربي موج راديويي است. قسمت عمده فيزيك امواج الكترومغناطيسي را از چشمههاي ماوراي زمين دريافت ميكنيم و در واقع همه آگاهي هايي كه درباره جهان داريم از اين طريق به ما ميرسد. بديهي است كه فيزيك امواج الكترو مغناطيسي خارج از زمين در گسترده نور مرئي از آغاز خلقت بشر مشاهده شدهاند.
فيزيك امواج الكترو مغناطيسي يك رده از فيزيك امواج است كه داراي مشخصات زير است.
امواج الكترو مغتاطيسي داراي ماهيت و سرعت يكسان هستند و فقط از لحاظ فركانس ، يا طول موج با هم تفاوت دارند .
در طيف فيزيك امواج الكترو مغناطيس هيچ شكافي وجود ندارد. يعني هر فركانس دلخواه را ميتوانيم توليد كنيم.
براي مقياسهاي بسامد يا طول موج ، هيچ حد بالا يا پائين تعيين شده اي وجود ندارد.
قسمت عمده اين فيزيك امواج داراي منبع فرازميني هستند.
فيزيك امواج الكترومغناطيسي جزو امواج عرضي هستند.
فيزيك امواج الكترومغناطيسي از طولانيترين موج راديويي ، با طول موجهاي معادل چندين كيلومتر ، شروع شده پس از گذر از موج راديويي متوسط و كوتاه تا نواحي كهموج ، فروسرخ و مرئي امتداد مييابد. بعد از ناحيه مرئي فرابنفش قرار دارد كه خود منتهي به نواحي اشعه ايكس ، اشعه گاما و پرتوي كيهاني ميشود. نموداري از اين طيف كه در آن نواحي قراردادي طيفي نشان داده ميشوند در شكل آمده است كه اين تقسيم بنديها جز براي ناحيه دقيقا تعريف شده مرئي لزوما اختيارياند.
يكاهاي معروف فيزيك امواج الكترومغناطيسي
طول موج لاندا بنا به تناسب مورد ، برحسب متر و همچنين ميكرون يا ميكرومتر ، واحد آنگستروم نشان داده ميشود. اين واحد اكنون دقيقا معادل 10- ^ 10 متر تعريف شده است.
ناحيه مرئي يا نور مرئي ( 4000-7500 آنگستروم ) توسط نواحي فروسرخ از طرف طول موجهاي بلند ، فرابنفش از طرف طول موجهاي كوتاه ، محصور شده است. معمولا اين نواحي به قسمت هاي فروسرخ و فرابنفش دور و نزديك ، با محدودههايي به ترتيب در حدود 30 ميكرومتر و 2000 آنگستروم تقسيم ميشوند كه نواحي مزبور داراي شفافيت نوري براي موادي شفاف از جمله منشورها و عدسيها ميباشند .
طبيعت نور
حساسيت اندام هاي ديداري به نور بسيار زياد است. بنابر تازهترين اندازه گيريها ، براي احساس نور كافي است كه حدود انرژي تابشي در هر ثانيه و تحت شرايط مناسب بر چشم بتابد. به عبارت ديگر ، توان كافي براي تحريك نوري قابل احساس مساوي است.
چشم انسان از جمله حساسترين وسايلي است كه مي تواند وجود نور را درك كند. اثر نور بر چشم در فرايند شيميايي معيني خلاصه مي شود. كه در لايه حساس چشم پديد مي آيد و باعث تحريك عصب بينايي و مركزهاي مربوط در مغز قدامي مي شود. اثر شيميايي نور مشابه با كش روي اي حساس چشم انسان را مي توان در محور تدريجي رنگها در نور مشاهده كرد .
با استفاده از اين وسايل خاص مي توان پديد آمدن جريان الكتريكي بر اثر نور را به سهولت آشكار كرد. اگر بام يك خانه كوچك را بتوان با ماده اي كه در فتوسلها بكار مي رود پوشاند، مي توان در يك روز آفتابي به كمك انرژي نوري جريان الكتريكي با توان چند كيلووات بهت آورد. سرانجام بايد متمركز شد كه اثر مكانيك نور را نيز مي توان مشاهده كرد. اين اثر در فشار نور بر سطح بازتاب دهنده يا جذب كننده نور آشكار مي شود.
اگر جسم را به شكل پرههاي متحركي بسازيم، چرخش چنين پرههايي بر اثر نور تابشي را مي توان ديد. اين آزمايش جالب توجه اولين بار در 1900 توسط بروف در مسكو انجام شده است. محاسبهها نشان مي دهد كه تابش پرتوهاي خورشيدي بر آينهها اثر مي كند.
معادلات الكترومغناطيس ماكسول و آغاز بحران فيزيك نيوتني
ماكسول تمام دانش تجربي آن روزگار را در مجموعه واحدي از معادلات رياضي به طور بارزي خلاصه كرد و جهان علم را شديداً تحت تاثير قرار داد. چنانكه همگان به تحسين وي پرداختند. لودويك بولتزمن از قول گوته مي نويسد كه آيا خدا بود كه اين سطور را نوشت.
وي به شيوه اي صرفاً نظري نشان داد كه ميدان مغناطيسي مي تواند همانند موجي عرضي در اتر نور رسان انتشار يابد. پذيرش موجي نور به همان اندازه پذيرش يك زمينه ي فراگير يعني اتر نور رسان را ايجاب مي كرد. ماكسول در اين مورد مي گويد.
اترها را ابداع كردند تا سيارات در آنها شناور باشند، جوهاي الكتريكي و شارهاي مغناطيسي را تشكيل دهند، احساس ها را از يك پاره ي پيكر ما به پاره ي ديگر منتقل كنند. ولي آخر، تا آنجا كه تمامي فضا سه يا چهار بار از اترها پر شده است... تنها اتري كه باقيمانده است، همان است كه توسط هويگنس براي توضيح انتشار نور ابداع شده است.
بنابراين سرعت ثابت امواج الكترمغناطيسي بايستي نسبت به يك دستگاه مقايسه مي شد، و اين دستگاه همان دستگاه اتر بود. يعني اتر ساكن مطلق فرض مي شد و تمام اجسام نسبت به آن در حركت بودند و سرعت امواج الكترومغناطيسي و در حالت خاص سرعت نور نسبت به اتر ثابت بود. اين نظريه در حالي شكل گرفت كه نسبيت گاليله اي نيز معتبر و بي نقص تصور مي شد. بنابراين اگر سرعت نور نسبت به يك دستگاه لخت c باشد و دستگاه با سرعت v نسبت به اتر در حركت باشد، در آنصورت سرعت نور نسبت به اتر w برابر خواهد شد با w=c+v چنانچه نور در جهت مخالف دستگاه حركت كند، آنگاه خواهيم داشت w=c-v نتيجه اينكه در اواخر قرن نوزدهم ميلادي فيزيك نظري بر سه بنياد زير مبتني بود.
معادلات نيوتن
نسبيت گاليله اي
معادلات ماكسول
بر اين اساس ماكسول به فكر محاسبه سرعت حركت منظومه ي شمسي نسبت به اتر افتاد. وي در سال 1879 طي نامه اي كه براي تاد در آمريكا نوشت، طرحي را براي اندازه گيري سرعت حركت منظومه ي شمسي نسبت به اتر پيشنهاد كرد. يك آمريكايي به نام مايكلسون اين طرح را دنبال كرد و براي انجام آزمايش تداخل سنجي نيز ساخت و در سال 1880 آزمايش كرد.
آزمايش مايكلسون
آزمايش مايلكسون بر اساس نسبيت گاليله شكل گرفت. در نسبيت گاليله اي همه ي اجسام نسبت به اتر كه ساكن فرض شده بود حركت مي كردند. بنابراين اگر جسمي مثلاً زمين نسبت به اتر با سرعت V1 در حركت بود و جسم ديگري مثلاً يك راكت نسبت به زمين با سرعت V2 حركت مي كرد، انگاه سرعت راكت نسبت به اتر از رابطه ي زير به دست مي آمد:
V=v1+V2
سئوال مايكلسون اين بود كه اگر دو شعاع نوراني يكي عمود بر جهت حركت زمين و ديگري همجهت با آن به دو آينه كه در فاصله مساوي از منبع نور قرار دارند بفرستيم، كداميك زودتر بر مي گردد؟ طبق محاسبات مايكلسون كه در ادامه خواهد آمد و با استفاده از نسبيت گاليله اي و مطلق بودن زمان و با توجه به جمع برداري سرعت ها، زمان رفت و برگشت دو شعاع نوراني قابل محاسبه و با توجه به آن مي توان سرعت مطلق زمين را نسبت به اتر محاسبه كرد.
با توجه به شكل آزمايش مايكلسون، يك پرتو نوري (مايكلسون از نور خورسيد استفاده كرد) به آينه مياني دستگاه برخورد مي كند. آينه نيمه اندود است قسمتي از نور را عبور مي دهد و بخشي از آن را با توجه به زاويه اي كه با نور ورودي تشكيل داده تحت زاويه 45 درجه منعكس مي كند.
پرتو عبوري در رفت و بازگست بازوي تداخل سنج را طي مي كند كه با توجه به اينكه در رفت و بازگشت به ترتيب سرعت هاي زير خواهد داشت:
c+v and c-v
كه در آن c , v به ترتيب سرعت نور نسبت به زمين و سرعت زمين نسبت به اتر است. بنابراين زمان رفت و برگشت پرتو موازي با حركت زمين برابر خواهد شد با
T1=(L/c+v)+(L/c-v)=2Lc/c2-v2
كه در آن L طول بازوي تداخل سنج است.
اما پرتوي كه عمود بر جهت حركت منعكس مي شود، قبل از آنكه به منعكس كننده برسد، منعكس كننده قدري جابجا شده و كه در اين حالت كقدار جابجايي آن با بازوي تداخل سنج و مسير نور يك مثلث قائم الزاويه تشكيل مي دهد. كه مي توان نشان داد زمان رفت و برگشت تور در جهت عمود بر جهت حركت رمين برابر است با:
T2=2L/(c2-v2)1/2
با تقسيم طرفين روابط بالا بر يكديگر و پس از ساده كردن خواهيم داشت:
T2=T1/(1-v2/c2)1/2
در اين رابطه سرعت نور مشخص است و زمانها با آزمايش قابل محاسبه هستند و تنها مجهول آن v يعني سرعت زمين نسبت به اتر مجهول بود كه طبق پيش بيني مايكلسون بسادگي قابل محاسبه بود.
مايكلسون براي آنكه طول بازوي تداخل سنج هم موجب بروز اشكال نشود با چرخندان آن به اندازه 90 درجه تنها يك طول مورد استفاده قرار گرفت، با اين وجود نتيجه ي آزمايش منفي بود. بارها و بارها اين آزمايش و حتي با در سال 1987 به كمك مورلي تكرار شد، بازهم نتيجه منفي بود و دو زمان اندازه گيري شده با هم برابر بود. يعني آزمايش نشان داد كه زمين نسبت به اتر ساكن است.
بحران فيزيك كلاسيك
آنچه از اين آزمايش به دست آمد بسيار گيج و ناراحت كننده بود. اولين فكري كه قوت گرفت اين بود كه بايد اشكال از معادلات ماكسول باشد كه تنها بيست سال از عمر آن مي گذشت. يعني بايد آنها را طوري تغيير داد تا با نسبيت گاليله اي سازگار باشد. اما آزمايش فيزو و ساير نتايج حاصل از حركت نور و امواج الكترومغناطيسي آنها را تاييد مي كرد.
مورد بعدي اشكال را به مكانيك نيوتني وارد كردند، اما مكانيك نيوتني هم در جهان معمولي پا برجا و با تجربه سازگار بود. هر تلاشي كه براي توجيه علت شكست نتيجه ي آزمايش مايكلسون انجام مي دادند، با شكست رو به رو مي شد. در اين ميان دو نظريه از بقيه حالب تر به نظر مي رسيد.
يكي كشش اتري كه به موجب آن جارجوب اتر بطور موضعي به كليه ي اجسام با جرم محدود متصل است. اين نظريه هيچ اصلاحي را در قوانين نيوتن، نسبيت گاليله اي و معادلات ماكسول لازم نمي دانست. اما اين نظري با كجراهي نور ستارگان ناسازگار بود.
نظريه دوم نظريه گسيلي بود كه طبق آن معادله هاي ماكسول را بايد طوري اصلاح مي كردند كه سرعت نور با سرعت چشمه ي صادر كننده بستگي داشته باشد. اين نظريه نيز با نور واصل از ستارگان دوتايي ناسازگار بود
سرانجام در سال 1893 فيتز جرالد نظريه ي عجيبي ارائه داد. طبق نظر فيتز جرالد، تمام اجسام در جهت حركت خود نسبت به اتر منقبض مي شوند و عامل انقباض برابر است با:
1/sqr(1-(v2/c2)^2)
اين نظريه هرچند عجيب و ساختگي به نظ مي رسيد، اما جون فرضيه اتر را مي پذيرفت و معادلات الكترومغناطيس ماكسول را تغيير نمي داد و در عين حال اصول مكانيك بهمان شكل قبلي باقي مي گذاشت و نتيجه ي آزمايش را نيز توجيه مي كرد، بيشتر مورد قبول بود.
متعاقب آن لورنتس تبديلات خود را كه به تبديلات لورنتس معروف است ارائه كرد :
Lorentz Transformation
The primed frame moves with velocity v in the x direction with respect to the fixed reference frame. The reference frames coincide at t=t'=0. The point x' is moving with the primed frame.
در همان دوران كه لورنتس روي اشعه ي كاتدي كار مي كرد، اين انقباض را بوسيله ي نظريه الكتروني خود توضيح داد. وي نظر داد كه جرم ذره اي باردار كه بر اثر حركت در حجم كوچكتري متمركز مي شود، اضافه خواهد شد. و بدين تريب نظريه تغييرات جرم نيز براي اولين بار در فيزيك مطرح شد.
تمام اين كوششها براي حفظ دستگاه مرجع مطلق اتر انجام شد، اما ديگر اين موجود ناسازگاري خود را با مشاهدات تجربي نشان داده بود. پوانكاره نخستين كسي بود كه اظهار داشت آين اتر ما واقعاً وجود دارد؟ من اعتقاد ندارم كه مشاهدات دقيقتر ما هرگز بتواند چيزي بيشتر از جابجايي هاي نسبي را آشكار كند
بدين ترتيب فيزيك نظري در آغاز قرن بيستم با بزرگترين بحران دوران خود رو به رو بود .