بخشی از مقاله
یا الیاف تقویتی
مقدمه :
بسیاری از سازههای بتن آرمة موجود در دنیا در اثر تماس با سولفاتها، كلریدها و سایر عوامل خورنده، دچار آسیبهای اساسی شدهاند. این مساله هزینههای زیادی را برای تعمیر، بازسازی و یا تعویض سازههای آسیب دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یك مسالة مهندسی، بلكه به عنوان یك مسالة اجتماعی جدی تلقی شده است . تعمیر و جایگزینی سازههای بتنی آسیبدیده میلیونها دلار خسارت در دنیا به دنبال داشته
است. در امریكا، بیش از 40 درصد پلها در شاهراهها نیاز به تعویض و یا بازسازی دارند . هزینة بازسازی و یا تعمیر سازههای پاركینگ در كانادا، 4 تا 6 میلیارد دلار كانادا تخمین زده شده است . هزینة تعمیر پلهای شاهراهها در امریكا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیكه برای
بازسازی كلیة سازههای بتن آرمة آسیبدیده در امریكا در اثر مسالة خوردگی میلگردها، پیشبینی شده كه به بودجة نجومی 1 تا 3 تریلیون دلار نیاز است! در مناطق مختلف ایران نیز اثرات مخرب كلریدها و سولفاتهای مهاجم در محیط های دریایی و ساحلی بر پایههای پل، آبگیرها، سدها و كانالهای بتن آرمه که باعث ایجاد خوردگی فولاد بتن میشود سبب اعمال ه
زینه های سنگین جهت مرمت ویا بازسازی ابنیه ها خواهد بود.
حال اگر بخواهیم تمامی این ابنیه ها را از نو بسازیم متحمل هزینه های گزافی خواهیم گشت فلذا با اعمال تمهیداتی جهت مرمت و ترمیم سازه ها می توان هزینه ها را پایین آورد.
تكنیكهایی چند، جهت جلوگیری از خوردگی قطعات فولادی الحاقی به سازه و نیز فولاد در بتن مسلح توسعه داده شده و مورد استفاده قرار گرفته است كه از بین آنها میتوان به:
پوشش اپوكسی بر قطعات فولادی ومیلگردها، تزریق پلیمر به سطوح بتنی و حفاظت كاتدیك
میلگردها اشاره نمود. با این وجود هر یك از این تكنیكها فقط تا حدودی موفق بوده است محققان امروزه به جانشین كردن قطعات فولادی و میلگردهای فولای با مصالح جدید مقاوم در مقابل خوردگی، معطوف گردیده اند.
مواد كامپوزیتی (Fiber Reinforced Polymers/Plastics) FRP موادی بسیار مقاوم در مقابل
محیطهای خورنده همچون محیطهای نمكی و قلیایی هستند به همین دلیل امروزه كامپوزیتهای FRP، موضوع تحقیقات توسعهای وسیعی به عنوان جانشین قطعات و میلگردهای فولادی و كابلهای پیشتنیدگی شدهاند. چنین تحقیقاتی به خصوص برای سازههای در مجاورت آب و بالاخص در محیطهای دریایی و ساحلی، به شدت مورد توجه قرار گرفتهاند.
آشنائی با FRP:
FRP (Fiber Reinforcement polymer ) نوعی ماده کامپوزیت متشکل از دو بخش فیبر یا الیاف تقویتی است که به وسیله یک ماتریس رزین از جنس پلیمر احاطه شده است. که به دو شکل ورق های FRP و میلگردهای FRP وجود دارد.
نقش اصلی ماتریس عبارت است از :
1-انتقال برش از فیبر تقویتی به ماده مجاور
2- محافظت از فیبر در شرایط محیطی
3- جلوگیری از خسارات مکانیکی وارد بر الیاف
4- کنترل کمانش موضعی الیاف تحت فشار
به طور کلیFRP ها بر اساس فیبر تشکیل دهنده ی آنها
به چند دسته زیر تقسیم می شوند:
1- CFRP با الیافی از جنس کربن
2-GFRP با الیافی از جنس شیشه
3- AFRP با الیافی از جنس آرامید
مزایای استفاده از FRP:
1 - وزن کم (چگالی آن در حدود 20% فولاد است .)
2 - مقاومت در برابر خورندگی
3 - نفوذناپذیری مغناطیسی
4 - امکان تقویت به صورت خارجی
5- حمل و نقل آسان وسرعت اجرای بالابه دلیل وزن کم
مواد FRP از دو جزء اساسی تشكیل میشوند؛ فایبر (الیاف) و رزین (مادة چسباننده). فایبرها كه اصولاً الاستیك، ترد و بسیار مقاوم هستند، جزء اصلی باربر در مادة FRP محسوب میشوند. بسته به نوع فایبر، قطر آن در محدودة5 تا 25 میكرون میباشد.
رزین اصولاً به عنوان یك محیط چسباننده عمل میكند، كه فایبرها را در كنار یكدیگر نگاه میدارد. با این وجود، ماتریسهای با مقاومت كم به صورت چشمگیر بر خواص مكانیكی كامپوزیت نظیر مدول الاستیسیته و مقاومت نهایی آن اثر نمیگذارند. ماتریس (رزین) را میتوان از مخلوطهای ترموست و یا ترموپلاستیك انتخاب كرد. ماتریسهای ترموست با اعمال حرارت سخت شده و دیگر به حالت
مایع یا روان در نمیآیند؛ در حالیكه رزینهای ترموپلاستیك را میتوان با اعمال حرارت، مایع نموده و با اعمال برودت به حالت جامد درآورد. به عنوان رزینهای ترموست میتوان از پلیاستر، وینیلاستر و اپوكسی، و به عنوان رزینهای ترموپلاستیك از پلیوینیل كلرید (PVC)، پلیاتیلن و پلی پروپیلن (PP)، نام برد .
فایبر ممكن است از شیشه، كربن، آرامید و یا وینیلون باشد كه در اینصورت محصولات كامپوزیت مربوطه به ترتیب به نامهای GFRP، CFRP،AFRP و VFRP شناخته میشود. در ادامه شرح مختصری از بعضی از فایبرهای متداول ارائه خواهد شد.
1-الیاف شیشه:
فایبرهای شیشه در چهار دسته طبقهبندی میشوند :
1-E-Glass: متداول ترین الیاف شیشه در بازار با محتوای قلیایی كم، كه در صنعت ساختمان به كار میرود، (با مدول الاستیسیتة، مقاومت نهایی ، و كرنش نهایی ).
2 – Z-Glass: با مقاومت بالا در مقابل حملة قلیائیها، كه در تولید بتن الیافی به كار گرفته میشود.
3 – A-Glass: با مقادیر زیاد قلیایی كه امروزه تقریباً از رده خارج شده است.
4 – S-Glass: كه در تكنولوژی هوا-فضا و تحقیقات فضایی به كار گرفته میشود و مقاومت و مدول الاستیسیتة بسیار بالایی دارد، ( و).
2- الیاف كربن:
الیاف كربن در دو دسته طبقهبندی میشوند:
1- الیاف كربنی از نوع PAN در سه نوع مختلف هستند. تیپ I كه تردترین آنها با بالاترین مدول الاستیسیته محسوب میشود. ( و). تیپ II كه مقاومترین الیاف كربن است ( و)؛ و نهایتاً تیپ III كه نرمترین نوع الیاف كربنی با مقاومتی بین تیپ I و IIمیباشد.
2 – الیاف با اساس قیری(Pitch-based) كه اساساً از تقطیر زغال سنگ بدست میآیند. این الیاف از الیافPAN ارزانتر بوده و مقاومت و مدول الاستیسیتة كمتری نسبت به آنها دارند ( و).
لازم به ذكر است كه الیاف كربن مقاومت بسیار خوبی در مقابل محیط های قلیایی و اسیدی داشته و در شرایط سخت محیطی از نظر شیمیایی كاملاً پایدار هستند.
3- الیاف آرامید:
آرامید،یك كلمة اختصاری از آروماتیك پلیآمید است [12].آرامیداساساً الیاف ساختة دست بشر است كه برای اولین بار توسط شركت DuPont در آلمان تحت نام كولار (Kevlar) تولید شد.چهارنوع كولار وجود دارد كه از بین آنها كولار 49 برای مسلح كردن بتن، طراحی و تولید شده و مشخصات مكانیكی آن بدین قرار است: و.
انواع محصولات FRP:
1- میله های كامپوزیتی:
میلههای ساخته شده از كامپوزیتهای FRPهستند كه جانشین میلگردهای فولادی در بتن آرمه خواهند شد. كاربرد این میلهها به دلیل عدم خوردگی، مساله كربناسیون و كلراسیون را كه از جمله مهمترین عوامل مخرب در سازههای بتن آرمه هستند، به كلی حل خواهند نمود.
2- شبكههای كامپوزیتی:
شبكههای كامپوزیتی FRP (Grids) محصولاتی هستند كه از برخورد میلههای FRP در دو جهت و یا در سه جهت ایجاد میشوند. نمونهای از این محصول، شبكة كامپوزیتی NEFMAC است كه از فایبرهای كربن، شیشه یا آرامید و رزین وینیل استر تولید میشود و منجمله برای مسلح كردن بتن مناسب است.
3- كابل:
طناب و تاندنهای پیشتنیدگی: محصولاتی شبیه میلههای كامپوزیتی FRP، ولی به صورت انعطافپذیر هستند، كه در سازههای كابلی و بتن پیش تنیده در محیطهای دریایی و خورنده كاربرد دارند. این محصولات در اجزاء پیشتنیدة در مجاورت آب نیز بكار گرفته میشوند.
4- ورقههای كامپوزیتی:
ورقههای كامپوزیتی Sheets) FRP)، ورقههای با ضخامت چند میلیمتر از جنس FRP هستند. این ورقهها با چسبهای مستحكم و مناسب به سطح بتن چسبانده میشوند. ورقههای FRP پوشش مناسبی جهت ایزوله كردن سازههای آبی از محیط خورندة مجاور هستند. همچنین از ورقههای كامپوزیتی FRP جهت تعمیر و تقویت سازههای آسیب دیده (ناش
ی از زلزله و یا ناشی از خوردگی آبهای یوندار) استفاده میشوند.
5- پروفیلهای ساختمانی:
مصالح FRP همچنین در شكل پروفیلهای ساختمانی به صورت I شكل، T شكل، نبشی و ناودانی تولید میشوند. چنین محصولاتی میتوانند جایگزین بسیار مناسبی برای قطعات و سازههای فولادی در مجاورت آب تلقی شوند.
v مشخصات اساسی محصولات كامپوزیتی FRP:
1- مقاومت در مقابل خوردگی:
بدون شك برجسته ترین و اساسی ترین خاصیت محصولات كامپوزیتیFRP مقاومت آنها در مقابل خوردگی است. در حقیقت این خاصیت مادهFRP تنها دلیل نامزد كردن آنها به عنوان یك گزینة جانشین برای اجزاء فولادی و نیز میلگردهای فولادی است. به خصوص در سازههای بندری، ساحلی و دریایی،مقاومت خوب كامپوزیت FRP در مقابل خوردگی، سودمندترین مشخ
صة میلگردهای FRP است.
2- مقاومت:
مصالح FRPمعمولاً مقاومت كششی بسیار بالایی دارند، كه از مقاومت كششیفولاد به مراتب بیشتر است. مقاومت كششی بالای میلگردهای FRP كاربرد آنها را برای سازههای بتن آرمه، خصوصاً برای سازههای پیشتنیده بسیار مناسب نموده است. مقاومت كششی مصالح FRP اساساً به مقاومت كششی، نسبت حجمی، اندازه و سطح مقطع فایبرهای بكار رفته در آنها بستگی دارد. مقاومت كششی محصولات FRP برای میلههای با الیاف كربن 1100 تا MPa2200،
برای میلههای با الیاف شیشه 900 تا MPa1100، و برای میلههای با الیاف آرامید 1350 تا MPa 1650 گزارش شده است . با این وجود، برای بعضی از این محصولات، حتی مقاومتهای بالاتر از MPa 3000 نیز گزارش شده است. توجه شود كه بطور كلی مقاومت فشاری میلههای كامپوزیتی FRP از مقاومت كششی آنها كمتر است؛ به عنوان نمونه مقاومت فشاری محصولات ISOROD برابر MPa 600 و مقاومت كششی آنها MPa700 است.
3- مدول الاستیسیته:
مدول الاستیسیتة محصولات FRP اكثراً در محدودة قابل قبولی قرار دارد؛ اگر چه اصولاً كمتر از مدول الاستیسیتة فولاد است. مدول الاستیسیتة میلههای كامپوزیتی FRP ساخته شده از الیاف كربن، شیشه و آرامیدبه ترتیب در محدوده 100 تا GPa 150، GPa 45 و GPa 60 گزارش شده است.
4- وزن مخصوص:
وزن مخصوص محصولات كامپوزیتی FRP به مراتب كمتر از وزن مخصوص فولاد است؛ به عنوان نمونه وزن مخصوص كامپوزیتهای CFRP یك سوم وزن مخصوص فولاد است. نسبت بالای مقاومت به وزن در كامپوزیتهایFRP از مزایای عمدة آنها در كاربردشان به عنوان مسلح كنندة بتن محسوب میشود.
5- عایق بودن:
مصالح FRP خاصیت عایق بودن بسیار عالی دارند. به بیان دیگر، این مواد از نظر مغناطیسی و الكتریكی خنثی بوده و عایق محسوب میشوند. بنابراین استفاده از بتن مسلح به میلههای FRP در قسمتهایی از بیمارستان كه نسبت به امواج مغناطیسی حساس هستند، و در مسیرهای هدایتی قطارهای شناور مغناطیسی و همچنین در باند فرودگاهها و مراكز رادار بسیار سودمند خواهد بود.
6- خستگی :
خستگی خاصیتی است كه در بسیاری از مصالح ساختمانی وجود داشته و در نظر گرفتن آن ممكن است به شكست غیر منتظره، خصوصاً در اجزایی كه در معرض سطوح بالایی از بارها و تنشهای تناوبی قرار دارند، منجر شود. در مقایسه با فولاد، رفتار مصالح FRP در پدیدة خستگی بسیار عالی است؛ به عنوان نمونه برای تنشهای كمتر از یك دوم مقاومت نهایی، مواد FRP در اثر خستگی گسیخته نمیشوند.
7- خزش :
پدیدة گسیختگی ناشی از خزش اساساً در تمام مصالح ساختمانی وجود دارد؛ با این وجود چنانچه كرنش ناشی از خزش جزء كوچكی از كرنش الاستیك باشد، عملاً مشكلی بوجود نمیآید. در مجموع، رفتار خزشی كامپوزیتها بسیار خوب است؛ به بیان دیگر، اكثر كامپوزیتهای در دسترس، دچار خزش نمی شوند.
8 – چسبندگی با بتن :
خصوصیت چسبندگی، برای هر مادهای كه به عنوان مسلح كنندة بتن بكار رود، بسیار مهم تلقی می شود. در مورد میله های كامپوزیتی FRP، اگر چه در بررسی بسیار اولیه، مقاومت چسبندگی ضعیفی برای كامپوزیتهای از الیاف شیشه گزارش شده بود، تحقیقات اخیر در دنیا مقاومت چسبندگی خوب و قابل قبولی را برای میلههای كامپوزیتی FRP گزارش می كند.
9- خم شدن:
چنانچه كامپوزیتهای FRP در بتن مسلح بكار گرفته شوند، به جهت مهار میلگردهای طولی، میلگردهای عرضی و تنگها، لازم است در انتها خم شوند. با این وجود عمل خم كردن میلههای FRP بسیار دشوارتر از خم كردن میلگردهای فولادی بوده و در حال حاضر برای مصالح موجود FRP، نمیتوان خم كردن را در كارگاه انجام داد. اگر چه در صورت لزوم، میتوان خم میلههای كامپوزیتی FRP را با سفارش آن به تولید كننده در كارگاه انجام داد.
10- انبساط حرارتی:
خصوصیات انبساط حرارتی فولاد و بتن بسیار به هم نزدیك هستند؛ ضریب انبساط حرارتی این دو ماده به ترتیب: و میباشد. ضریب انبساط حرارتی میلههای FRP اغلب از بتن متفاوت است. به طور خلاصه ضریب انبساط حرارتی مصالح FRP با الیاف كربن و شیشه به ترتیب برابر با و میباشد. بدترین حالت مربوط به آرامید است كه ضریب انبساط حرارتی آن منفی بوده و برابر با میباشد.
vاستفاده از مواد FRP به عنوان مسلح کنندة خارجی در سازهها
به دنبال فرسوده شدن سازههای زیربنایی و نیاز به تقویت سازهها برای برآورده کردن شرایط سختگیرانة طراحی، طی دو دهه اخیر تأکید فراوانی بر روی تعمیر و مقاوم سازی سازهها در سراسر جهان، صورت گرفته است. از طرفی، بهسازی لرزهای سازهها بهخصوص در مناطق زلزله خیز، اهمیت فراوانی یافته است. در این میان تکنیکهای استفاده از مواد مرکب FRPبهعنوان
مسلح کنندة خارجی به دلیل خصوصیات منحصر به فرد آن، از جمله مقاومت بالا، سبکی، مقاومت شیمیایی و سهولت اجرا، در مقاوم سازی و احیاء سازهها اهمیت ویژهای پیدا کردهاند. از طرف دیگر، این تکنیکها به دلیل اجرای سریع و هزینههای کم جذابیت ویژهای یافتهاند.
مواد مرکب FRP در ابتدا بهعنوان مواد مقاوم کننده خمشی برای پلهای بتنآرمه و همچنین بهعنوان محصور کننده در ستونهای بتن آرمه مورد استفاده قرار میگرفتند؛ اما به دنبال تلاشهای
تحقیقاتی اولیه، از اواسط دهه1980 توسعة بسیار زیادی در زمینه استفاده از مواد FRP در
مقاومسازی سازههای مختلف مشاهده میشود؛ بطوریکه دامنة کاربردهای آن به سازههایی با مصالح بنایی، چوبی و حتی فلزی نیز گسترش یافته است. تعداد موارد کاربرد مواد FRP در مقاوم سازی، تعمیر و یا بهسازی سازهها از چند مورد در10 سال پیش، به هزاران مورد در حال حاضر رسیده است. اجزاء سازهای مختلفی شامل تیرها، دالها، ستونها، دیوارهای برشی، اتصالات، دودکشها، طاقها، گنبدها و خرپاها تا کنون توسط مواد FRP مقاوم شدهاند.
مقاوم سازی سازههای بتن آرمه با مواد FRP:
مواد مرکب FRP، دامنة وسیعی از کاربردها را برای مقاوم سازی سازههای بتنآرمه در مواردی که تکنیکهای مرسوم مقاوم سازی ممکن است مسئله ساز باشند، به خود اختصاص دادهاند. برای نمونه، یکی از معمولترین تکنیکها برای بهسازی اجزاء بتن آرمه، استفاده از ورقهای فولادی است که از بیرون به این اجزاء چسبانده میشود. این روش، روشی ساده، مقرون به صرفه و کارا است؛ اما از جهات زیر مسئله ساز است:
1- زوال چسبندگی بین فولاد و بتن که از خوردگی فولاد ناشی میشود .
2- مشکلات ساخت صفحات فولادی سنگین در کارگاه ساختمان.
3- نیاز به نصب داربست
4- محدودیت طول در انتقال صفحات فولادی به کارگاه ساخت (در مورد مقاوم سازی خمشی اجزاء بلند).
نوارها یا صفحات میتوانند جایگزینی برای صفحات فولادی باشند. مواد FRP برخلاف فولاد، تحت تأثیر زوال الکتروشیمیایی قرار نمیگیرند و میتوانند درمقابل خوردگی اسیدها، بازها و نمکها و مواد مهاجم مشابه در دامنة وسیعی از دما مقاومت کنند. در نتیجه نیاز به سیستمهای حفاظت از خوردگی نمیباشد وآمادهکردن سطوح اعضاء قبل از چسباندن صفحات FRP و نگهداری از آنها بعد از نصب، از صفحات فولادی آسانتر است.
در موضع معین و در نسبت حجمی و جهت خاصی درون ماتریس قرارگیرند تا بیشترین کارایی بهدست آید. مواد حاصله تنها با درصدی از وزن فولاد، مقاومت و سختی بالایی در جهت الیاف دارند. آنها همچنین حمل و نقل آسانتری داشته، نیازمند داربست کمتری برای نصب میباشند، و میتوانند برای مکانهایی که دارای دسترسی محدود هستند، مورد استفاده قرار گیرند؛ و پس از نصب، بار اضافی قابلتوجهی را به سازه تحمیل نمیکنند.
روش مرسوم دیگر در مقاوم سازی اعضای بتنآرمه، استفاده از پوششهایی از نوع بتنآرمه، بتن پاشیدنی و یا فولاد میباشد. این روش تا جایی که مربوط به مقاومت، سختی و شکل پذیری میشود، کاملا مؤثر است؛ اما باعث افزایش ابعاد مقاطع و بار مرده سازه میشود. همچنین این
شیوه نیازمند عملیات پر دردسر و تخلیه ساكنین است و به صورت بالقوه باعث افزایش نامطلوب سختی اعضای بتنآرمه می شود. بهعنوان یک جایگزین، صفحات FRP میتوانند به دور اجزاء بتنآرمه پیچیده شوند و افزایش قابل توجه مقاومت و شکل پذیری را به دنبال داشته باشند؛ بدون آنکه تغییر زیادی در سختی ایجاد نمایند. یک نکتة مهم در ارتباط با مقاوم سازی اعضا با استفادة خارجی از FRP آن است که باید درجة مقاوم سازی (نسبت ظرفیت نهایی عضو مقاومشده به
ظرفیت نهایی عضو مقاوم نشده) را محدود کنیم تا حداقل سطح ایمنی در حوادثی مانند آتش سوزی که منجر به از دست رفتن کارایی FRP میشوند، حفظ گردد.
امروزه مواد كامپوزیتی FRP به وفور جهت تقویت خمشی و برشی تیرهای بتن آرمه به كار میروند كه نمونهای از آن در شكل نشان داده شده است. در این شكل ملاحظه میشود كه با متصل كردن صفحات FRP به وجه پایینی تیر ظرفیت خمشی مثبت و با متصل كردن آن به وجه بالایی تیر ظرفیت خمشی منفی حاصل میشود. همچنین میتوان با اتصال صفحات FRP به دو وجه كناری تیر، ظرفیت برشی مناسبی فراهم نمود.
در شکست تیرهای بتنآرمة تقویت شده با صفحات FRP مکانیزمهای مختلف شکست، ازجمله گسیختگی صفحات FRP، خرد شدگی بتن، شکست برشی بتن و ترک خوردگی در محل اتصال چسب با بتن، گزارش شده است. همچنین نشان داده شده است که نوع FRP، ضخامت و طول آن باعث ایجاد انواع مختلفی از شکست نرم یا ترد میشود. بخصوص خواص مکانیکی ناحیة اتصال FRP و بتن از اهمیت خاصی برخوردار است. در این میان جدا شدن صفحات FRP از بتن مسالة كاملا
حائز اهمیت است و امروزه توجه زیادی را در دنیا به خود جلب مینماید. در این ارتباط به نظر میرسد كه استفاده از تقویتکنندههای خارجی حتی به میزان کم، میتواند ایمنی قابل ملاحظهای در برابر جدا شدن صفحات FRP از بتن، و نیز شکستهای برشی ترد فراهم آورد.
از طرفی مواد كامپوزیتی FRP به وفور جهت تقویت خمشی و فشاری و نیز افزایش شكل پذیری ستونها مورد استفاده قرار میگیرند. در همین ارتباط محصور شدگی بتن مهمترین خصوصیتی
است كه می توان آن را با چسباندن این مواد در اطراف ستونها فراهم نمود. از طرفی استفاده از مواد كامپوزیتی FRP برای افزایش شكل پذیری اتصالات و رفتار مناسبتر آن در زلزله نیز بسیار مطلوب خواهد بود.
میلگرد های کاپوزیتی یا FRP چیست ؟
به روش پالتروژن ساخته ميشوند. در اين روش دستهاي از الياف پس از آغشتهشدن با رزين پس از عبور از يك قالب در كنار هم قرار گرفته و يك پروفيل داراي مقطع ثابت را به وجود ميآورند. از عمده ترين مزاياي روش پالتروژن چندمنظوره بودن آن و كاربردهاي گوناگون آن در صنايع مختلف است. به عبارتي صرفاً با تغيير قالب دستگاه ميتوان علاوه بر محصولاتي كه در صنعت ساختمان كاربرد دارد، همانند انواع آرماتورها، محصولات گوناگون ديگري در حوزههاي مختلف از جمله تسمههاي ماشين
نساجي، ريلها، محافظ اتوبانها، چارچوب پنجرهها و درها، تيرهاي با مقطع I شكل، نبشيها و غيره توليد نمود. عمر محصولات پالتروژني بسيار بالاست و سرعت توليد يك محصول پالتروژني نيز نسبتاً زياد است. از نظر قيمت نيز با وجود اينكه يك تير پالتروژني قيمت ظاهري بيشتري نسبت به نمونة مشابه آهني دارد ليكن مقاومت خوب آن در مصارف خاص ضدخوردگي و زلزله و عمر بالاي آن ميتواند توجيهگر قيمت اولية بالاي آن باشد. در مصارف عمومي مانند ساخت سازهها اگر نياز به مقاومت در برابر خوردگي و زلزله وجود داشته باشد، استفاده از تيرهاي پالتروژني ميتواند توجيه اقتصادي نيز داشته باشد.
چرا به جای میلگرد های فلزی از FRP استفاده کنیم؟
دليل عمدة استفادة از ميلگردهاي FRP در داخل بتن، جلوگيري از پديدة خوردگي و افزايش ميرايي ارتعاشات ايجاد شده در سازه در برابر ارتعاش ميباشد. هر چند كه استفاده از ميلگردهاي FRP به جاي نمونههاي فلزي سبب كاهش وزن بنا نيز خواهد شد، اما در استفاده از اين ميلگردها، مساله كاهش وزن اهميت ناچيزي نسبت به دو مورد بيانشده دارد. دليل بالا بودن ضريب ميرايي
كامپوزيتها، خواص غيركشسان آنهاست كه انرژي جذب شده را ميرا ميكنند. در حالي كه مواد فلزي حالت كشسان داشته و انرژي جذب شده را ميرا نمينمايند. بنابراين مواد كامپوزيتي در برابر ارتعاشات زلزله عملكرد بهتري خواهند داشت و بهترين گزينه جهت مقاومت سازه در برابر لرزهها خواهند بود.
بكارگيري ميلگردهاي FRP به جاي فلزي، بهطور قابل ملاحظهاي از زيانهاي ناشي از بروز خوردگي جلوگيري ميكند. ظهور تخريب ناشي از پديدة خوردگي در بتن مسلحشده با ميلگرد فلزي بدين گونه است كه نخست ميلههاي فلزي داخل بتن دچار زنگزدگي شده و اكسيد ميشوند. سپس اين
اكسيدها به سمت سطح بيروني بتن شروع به مهاجرت كرده و با انتشار در داخل بتن باعث از بين رفتن آن ميشوند. بدين ترتيب با خوردهشدن دو جزء فلزي و بتني سازه، زمينة تخريب كامل سازة بتني فراهم ميگردد. روشهاي سنتي گذشته مانند چسباندن صفحات فلزي بر روي سازه يا اضافه كردن ضخامت بتن جهت مقابله با پديدة خوردگي ضمن آنكه مشكل خوردگي فلز را مرتفع نخواهد
نمود، سبب افزايش وزن سازه و آسيبپذيرترشدن آن در برابر زلزله نيز خواهد شد. جهت جلوگيري از اين امر ميتوان با تقويت سطح خارجي سازة بتني توسط مواد مركب و استفاده از ميلگردهاي FRP در داخل بتن، هم مشكل خوردگي فلز داخل سازه را حل نمود و هم جلوي مختل شدن كارايي سازه در صورت خورده شدن بتن را گرفت كه اين بهترين روش مقابله با پديدة خوردگي در يك سازة بتني ميباشد.
كشور ما نياز بسيار گستردهاي به ا
ستفاده از كامپوزيتها در قالب آرماتورهاي كامپوزيتي دارد. هماكنون بسياري از سازههاي بنا شده در محيطهاي خورندة مناطق مختلف كشور همچون پلهاي درياچة اروميه و يا ساختمانهاي جنوب كشور دچار معضل خوردگي هستند كه استفاده از كامپوزيتها ميتواند پاسخگوي مشكل اين قبيل سازهها باشد.
کاربرد کامپوزیتهای FRP در سازههای بتن آرمه
خلاصه
خوردگی قطعات فولادی در سازههای مجاور آب و نیز خوردگی میلگردهای فولادی در سازههای بتن آرمه ای که در معرض محیطهای خورندة کلروری و کربناتی قرار دارند، یک مسالة بسیار اساسی تلقی میشود. در محیطهای دریایی و مرطوب وقتی که یک سازة بتنآرمة معمولی به صورت دراز مدت در معرض عناصر خورنده نظیر نمکها، اسیدها و کلرورها قرار گیرد، میلگردها به دلیل آسیب
دیدگی و خوردگی، قسمتی از ظرفیت خود را از دست خواهند داد. به علاوه فولادهای زنگ زده بر پوستة بیرونی بتن فشار میآورد که به خرد شدن و ریختن آن منتهی میشود. تعمیر و جایگزینی اجزاء فولادی آسیب دیده و نیز سازة بتن آرمهای که به دلیل خوردگی میلگردها آسیب دیده است، میلیونها دلار خسارت در سراسر دنیا به بار آورده است. به همین دلیل سعی شده که تدابیر
ویژهای جهت جلوگیری از خوردگی اجزاء فولادی و میلگردهای فولادی در بتن اتخاذ گردد که از جمله میتوان به حفاظت کاتدیک اشاره نمود. با این وجود برای حذف کامل این مساله، توجه ویژه ای به جانشینی کامل اجزاء و میلگردهای فولادی با یک مادة جدید مقاوم در مقابل خوردگی معطوف گردیده است. از آنجا که کامپوزیتهای FRP (Fiber Reinforced Polymers/Plastics) بشدت در
مقابل محیطهای قلیایی و نمکی مقاوم هستند که در دو دهة اخیر موضوع تحقیقات گستردهای جهت جایگزینی کامل با قطعات و میلگردهای فولادی بودهاند. چنین جایگزینی بخصوص در محیطهای خورنده نظیر محیطهای دریایی و ساحلی بسیار مناسب به نظر میرسد. در این مقاله مروری بر خواص، مزایا و معایب مصالح کامپوزیتی FRP صورت گرفته و قابلیبت کاربرد آنها به عنوان جانشین کامل فولاد در سازههای مجاور آب و بخصوص در سازة بتن آرمه، به جهت حصول یک سازة کاملاً مقاوم در مقابل خوردگی، مورد بحث قرار خواهد گرفت.
1 – مقدمه
بسیاری از سازههای بتن آرمة موجود در دنیا در اثر تماس با سولفاتها، کلریدها و سایر عوامل خورنده، دچار آسیبهای اساسی شدهاند. این مساله هزینههای زیادی را برای تعمیر، بازسازی و یا تعویض سازههای آسیب دیده در سراسر دنیا موجب شده است. این مساله و عواقب آن گاهی نه تنها به عنوان یک مسالة مهندسی، بلکه به عنوان یک مسالة اجتماعی جدی تلقی شده است ]1[. تعمیر و جایگزینی سازههای بتنی آسیبدیده میلیونها دلار خسارت در دنیا به دنبال داشته است. در امریکا، بیش از 40 درصد پلها در شاهراهها نیاز به تعویض و یا بازسازی دارند ]2[. هزینة بازسازی و یا تعمیر سازههای پارکینگ در کانادا، 4 تا 6 میلیارد دلار کانادا تخمین زده شده است ]3[. هزینة تعمیر پلهای شاهراهها در امریکا در حدود 50 میلیارد دلار برآورد شده است؛ در حالیکه برای بازسازی کلیة سازههای بتن آرمة آسیبدیده در امریکا در اثر مسالة خوردگی میلگردها، پیشبینی شده که به بودجة نجومی 1 تا 3 تریلیون دلار نیاز است ]3[ !
از مواردی که سازههای بتن آرمه به صورت سنتی مورد استفاده قرار میگرفته، کاربرد آن در مجاورت آب و نیز در محیطهای دریایی بوده است. تاریخچه کاربرد بتن آرمه و بتن پیشتنیده در کارهای دریایی به سال 1896 بر میگردد ]4[. دلیل عمدة این مساله، خواص ذاتی بتن و منجمله مقاومت خوب و سهولت در قابلیت کاربرد آن چه در بتنریزی در جا و چه در بتن پیشتنیده بوده است. با این وجود شرایط آب و هوایی و محیطی خشن و خورندة اطراف سازههای ساحلی و دریایی همواره به عنوان یک تهدید جدی برای اعضاء بتن آرمه محسوب گردیده است. در محیطهای ساحلی و دریایی، خاک، آب زیرزمینی و هوا، اکثراً حاوی مقادیر زیادی از نمکها شامل ترکیبات سولفور و کلرید هستند.
در یک محیط دریایی نظیر خلیج فارس، شرایط جغرافیایی و آب و هوایی نامناسب، که بسیاری از عوامل خورنده را به دنبال دارد، با درجة حرارتهای بالا و نیز رطوبتهای بالا همراه شده که نتیجتاً خوردگی در فولادهای به کار رفته در بتن آرمه کاملاً تشدید میشود. در مناطق ساحلی خلیج فارس، در تابستان درجة حرارت از 20 تا 50 درجة سانتیگراد تغییر میکند، در حالیکه گاه اختلاف دمای شب و روز، بیش از 30 درجة سانتیگراد متغیر است. این در حالی است که رطوبت نسبی
اغلب بالای 60 درصد بوده و بعضاً نزدیک به 100 درصد است. به علاوه هوای مجاور تمرکز بالایی از دیاکسید گوگرد و ذرات نمک دارد [5]. به همین جهت است که از منطقة دریایی خلیج فارس به عنوان یکی از مخربترین محیطها برای بتن در دنیا یاد شده است [6]. در چنین شرایط، ترکها و ریزترکهای متعددی در اثر انقباض و نیز تغییرات حرارتی و رطوبتی ایجاد شده، که این مساله به
نوبة خود، نفوذ کلریدها و سولفاتهای مهاجم را به داخل بتن تشدید کرده، و شرایط مستعدی برای خوردگی فولاد فراهم میآورد [7-9]. به همین جهت بسیاری از سازههای بتن مسلح در نواحی ساحلی ایران نظیر سواحل بندرعباس، در کمتر از 5 سال از نظر سازهای غیر قابل استفاده گردیدهاند.
نظیر این مساله برای بسیاری از سازههای در مجاورت آب، که در محیط دریایی و ساحلی قرار ندارند نیز وجود دارد. پایههای پل، آبگیرها، سدها و کانالهای بتن آرمه نیز از این مورد مستثنی نبوده و اغلب به دلیل وجود یون سولفات و کلرید، از خوردگی فولاد رنج میبرند.
2 – راه حل مساله
تکنیکهایی چند، جهت جلوگیری از خوردگی قطعات فولادی الحاقی به سازه و نیز فولاد در بتن مسلح توسعه داده شده و مورد استفاده قرار گرفته است که از بین آنها میتوان به پوشش اپوکسی بر قطعات فولادی و میلگردها، تزریق پلیمر به سطوح بتنی و حفاظت کاتدیک میلگردها اشاره نمود. با این وجود هر یک از این تکنیکها فقط تا حدودی موفق بوده است [10]. برای حذف کامل مساله، توجه محققین به جانشین کردن قطعات فولادی و میلگردهای فولای با مصالح جدید مقاوم در مقابل خوردگی، معطوف گردیده است.
مواد کامپوزیتی (Fiber Reinforced Polymers/Plastics) FRP موادی بسیار مقاوم در مقابل محیطهای خورنده همچون محیطهای نمکی و قلیایی هستند. به همین دلیل امروزه کامپوزیتهای FRP، موضوع تحقیقات توسعهای وسیعی به عنوان جانشین قطعات و میلگردهای فولادی و کابلهای پیشتنیدگی شدهاند. چنین تحقیقاتی به خصوص برای سازههای در مجاورت آب و بالاخص در محیطهای دریایی و ساحلی، به شدت مورد توجه قرار گرفتهاند.
3 – ساختار مصالح FRP
مواد FRP از دو جزء اساسی تشکیل میشوند؛ فایبر (الیاف) و رزین (مادة چسباننده). فایبرها که اصولاً الاستیک، ترد و بسیار مقاوم هستند، جزء اصلی باربر در مادة FRP محسوب میشوند. بسته به نوع فایبر، قطر آن در محدودة 5 تا 25 میکرون میباشد [11].
رزین اصولاً به عنوان یک محیط چسباننده عمل میکند، که فایبرها را در کنار یکدیگر نگاه میدارد. با این وجود، ماتریسهای با مقاومت کم به صورت چشمگیر بر خواص مکانیکی کامپوزیت نظیر مدول الاستیسیته و مقاومت نهایی آن اثر نمیگذارند. ماتریس (رزین) را میتوان از مخلوطهای ترموست و یا ترموپلاستیک انتخاب کرد. ماتریسهای ترموست با اعمال حرارت سخت شده و دیگر به حالت مایع یا روان در نمیآیند؛ در حالیکه رزینهای ترموپلاستیک را میتوان با اعمال حرارت، مایع نموده و با اعمال برودت به حالت جامد درآورد. به عنوان رزینهای ترموست میتوان از پلیاستر، وینیلاستر و اپوکسی، و به عنوان رزینهای ترموپلاستیک از پلیوینیل کلرید (PVC)، پلیاتیلن و پلی پروپیلن (PP)، نام برد [3].
فایبر ممکن است از شیشه، کربن، آرامید و یا وینیلون باشد که در اینصورت محصولات کامپوزیت مربوطه به ترتیب به نامهای GFRP، CFRP،AFRP و VFRP شناخته میشود. در ادامه شرح مختصری از بعضی از فایبرهای متداول ارائه خواهد شد.
7- دوام کامپوزیتهای FRP
کامپوزیتهای FRP شاخة جدیدی از مصالح محسوب میشوند که دوام آنها دلیل اصلی و اولیه برای کاربرد آنها در محدودة وسیعی از عناصر سازهای شده است. به همین جهت است که از آنها نه تنها در صنعت ساختمان، بلکه در فضاپیما، بال هواپیما، درهای اتومبیل، مخازن محتوی گاز مایع، نردبان و حتی راکت تنیس نیز استفاده میشود. بنابراین از نقطه نظر مهندسی نه تنها مسالة مقاومت و سختی، بلکه مسالة دوام آنها تحت شرایط مورد انتظار، کاملاً مهم جلوه میکند.
مکانیزمهایی که دوام کامپوزیتها را کنترل میکنند عبارتند از :
1) تغییرات شیمیایی یا فیزیکی ماتریس پلیمر
2) از دست رفتن چسبندگی بین فایبر و ماتریس
3) کاهش در مقاومت و سختی فایبر
محیط نقش کاملاً تعیین کنندهای در تغییر خواص پلیمرهای ماتریس کامپوزیت دارد. هر دوی ماتریس و فایبر ممکن است با رطوبت، درجه حرارت، نور خورشید و مشخصأ تشعشعات ماوراء بنفش (UV)، ازن و نیز حضور بعضی از مواد شیمیایی تجزیه کننده نظیر نمکها و قلیاییها تحت ثأثیر قرار گیرند. همچنین تغییرات تکراری دما ممکن است به صورت سیکلهای یخزدن و ذوب شدن، تغییراتی را در ماتریس و فایبر باعث گردد. از طرفی تحت شرایط بارگذاری مکانیکی، بارهای تکراری ممکن است
باعث خستگی (Fatigue) شوند. همچنین بارهای وارده در طول زمان مشخص به صورت ثابت، ممکن است مسالة خزش (Creep) را به دنبال داشته باشند. مجموعهای از تمام مسائل مطرح شده در بالا، دوام کامپوزیتهای FRP را تحت تأثیر قرار میدهند.