بخشی از مقاله

سلولهای خورشیدی

کريستال سيليکون سی-اس آی
سی-اس آی، اصلي‌ترين ماده تجاري در توليد سلولهاي خورشيدي است و به اشکال مختلفي استفاده مي شود: سيليکون هاي تک کريستالي ، سيليکون هاي چند کريستالي و سيليکون لايه نازک .تکنيکهاي مرسوم براي توليد کريستالين سيليکون شامل : روش چوکرالسکي، روش محدوده شناور و روشهاي ديگري نظير ريخته‌گري مي باشد. زدودن ناخالصيها از سيليکون اهميت بسياري دارد. اين عمل با کمک تکنيکهايي چون منفعل سازي سطح ( با تابش هيدروژن به يک سطح ) و گترینگ ( يک روش شيميايي که با حرارت دادن ناخالصيها را از سيليکون بيرون مي کشد ) صورت مي پذيرد .با اينکه سلولهاي خورشيدي با سيليکون کريستالي ، از سال 1954 وجود داشته اند ، ابتکاري جديد رو به گسترش دارد . سلولهاي جديدي همچون ( ای دبلیو تی ) ، ( سیس ) از اين دسته اختراعات نو هستند .
سلولهاي خورشيدي با لايه نازک
اين نوع سلولها از لايه هاي بسيار نازک مواد نيمه هادي استفاده مي کنند که ضخامت آنها چند ميکرومتر است. اين لايه روي يک صفحه نگاه دارنده که از مواد ارزان مانند شيشه ، پلاستيک يا فولاد زنگ زن ساخته شده ، قرار مي گيرد. نيمه هادي‌هاي بکاررفته در لايه هاي نازک عبارتند از : سيليکون بي شکل ( آمورف ) ( آ-س آی) ، سی آی اس و تلوريد کادميم ( سی دی-تی ای ) . سيليکون آمورف ، ساختار کريستالي مشخص ندارد و تدريجاٌ با قرار گرفتن در برابر نور از بين رفته وکيفيت ابتدايي خود را از دست مي دهد. منفعل سازي به کمک هيدروژن مي تواند اين اثر را کاهش دهد . از آنجائي که مقدار مواد نيمه هادي بکار رفته در لايه نازک بسيار کمتر از سلولهاي پی وی معمول است، هزينه توليد سلولهاي نازک نيز به ميزان قابل ملاحظه‌اي کمتر از سلولهاي خورشيدي سيليکون کريستال است .
فن آوريهاي گروه سه و پنج
اين فن‌آوريهاي فتوولتائيک که بر اساس عناصر شيميايي گروه‌هاي سه و پنج جدول تناوبي ايجاد شده اند، بازده تبديل انرژي بسيار بالايي را چه در نور عادي و چه در نور متمرکز شده، از خود نشان مي دهند. سلولهاي تک کريستالي اين دسته معمولاٌ از آرسنيد گاليم ساخته مي شود. آرسنيد گاليم مي تواند همراه با عناصري مانند اينديم ، فسفر و آلومينيوم ، تشکيل آلياژهاي نيمه رسانايي بدهد که با مقادير مختلف انرژي نور خورشيد کار مي‌کنند .
تجهيزات چند تايي با بهره وري بالا
در اين روش، سلولهاي خورشيدي تکي بر روي همديگر قرار مي گيرند تا ميزان دريافت و تيديل انرژي خورشيدي بيشينه شود. لايه بالايي بيشترين مقدارا انرژي را از نور دريافت کرده و مابقي را عبور مي‌دهد تا جذب لايه هاي بعدي بشوند. بيشتر فعاليتهاي اين زمينه از آرسنيد گاليم و آلياژهاي آن استفاده مي کند. همچنين از سيليکون آمورف ، سی آی اس و فسفيد اينديم گاليم نيز بهره گرفته مي شود . با وجود آنکه سلولهاي متشکل از دو بخش ساخته شده است، اما بيشترين توجه به سلولهاي با سه اتصال و چهار اتصال است. در اين انواع ، موادي چون ژرمانيم که کمترين ميزان انرژي نور را نيز دريافت مي کند، در پايين‌ترين لايه استفاده مي شود .
ساخت سلولهاي خورشيدي
فاكتورهاي متفاوت و مهمي در توليد سلولهاي خورشيدي مطرح هستند. مواد نيمه رسانا عموماٌ با ناخالصيهاي مانند بورون يا فسفر تقويت مي شوند تا محدوده فرکانسهاي نور را که به آن پاسخ مي دهند، گسترش دهد. عمليات ديگري که انجام مي شود، شامل منفعل سازي سطحي مواد و بکارگيري پوششهاي ضد انعکاس مي باشند . محبوس کردن واحد کامل پی وی در يک پوسته محافظ، گام مهم ديگري در فرآيند توليد است.
سلولهاي خورشيدي پيشرفته
ديدگاههاي پيشرفته گوناگوني مسأله سلولهاي خورشيدي را مورد بررسي قرار مي دهند. سلولهاي خورشيدي حساس شده با رنگ ، سلولهايي هستند که از يک لايه دي‌اکسيد تيتانيوم آغشته به رنگ به جاي مواد نيمه رسانايي که در بيشتر سلولهاي خورشيدي براي ايجاد ولتاژ استفاده ميشود، استفاده ميكنند. چون دي اکسيد تيتانيوم به نسبت ارزانتر است، در حال حاضر ميتوان از سلولهاي خورشيدي پيشرفته تري مانند سلول هاي خورشيدي پليمري ( پلاستيکي ) – که مولکولهاي کربني بسيار بزرگي دارند – و سلولهاي فوتوالکتروشيميايي که از آب در مجاورت نور خورشيد مستيماٌ هيدروژن توليد مي کنند ، نام برد .
توازن اجزاء سيستم
باس شامل همه چيز در يک سيستم فوتولتاليک مي شود . اين مسأله ميتواند در ساختارهاي پايه‌اي، تجهيزات رديابي ، باتريها ، الکترونيک قدرت و ديگر تجهيزات مورد توجه قرار بگيرد.
امروزه بشر با دو بحران بزرگ روبرو است که بیش از آنچه ما ظاهرا تشخیص می دهیم با یکدیگر ارتباط دارند. از یک طرف جوامع صنعتی و همچنین شهرهای بزرگ با مشکل الودگی محیط زیست مواجهند و از طرف دیگر مشاهده می شود که مواد اولیه و سوخت مورد نیاز همین ماشینها با شتاب روز افزون در حال اتمام است.

اثرات مصرف بالای انرژِی در زمین و آب و هوا آشکارا مشخص می باشدو ما تنها راه حل را در پایین اوردن میزان مصرف انرژی می دانیم ,حال انکه این امر نمی تواند به طور موثر ادامه داشته باشد.توجه و توصل به انرژی اتمی به عنوان جانشینی برای سوختهای فسیلی نیز چندان موفقیت آمیز نبوده است.

صرف هزینه های سنگین و همچنین تشعشعات خطر ناکی که ازنیروگاههای اتمی در فضا پخش شده ,نتیجه مثبتی نداشته است و اگر یکی از این نیروگاهها منفجر شود زیانهای فراوان و جبران ناپذیری به بار خواهد اورد.به علاوه به مشکل اساسی که در مورد مواد سوختی نظیر نفت ,گاز و زغال سنگ داشتیم بر می خوریم بدین معنی که معادن اورانیم که سوخت این نیروگاهها را تامین می کند منابع محدودی هستند و روزی خواهد رسیدکه این ذخایر پایان خواهد یافت و ماده ای که جایگزین ان شود وجود نخواهد داشت.
انرژی خورشیدی :

خورشید به عنوان یک منبع بی پایان انرژی می تواند حلال مشکلات موجود در مورد انرژی و محیط زیست باشد.انرژی بدون خطر ...
این انرژی که به زمین می تابد هزاران بار بیشتر از انچه که ما نیاز داریم و مصرف می کنیم ,می باشد.حتی نور کمی که از پنجره به اتاق میتابد دارای انرژی بیشتری از سیم برقی است که به داخل اتاق کشیده شده است.از انرژی خورشیدی می توان استفاده های مهم و کاملا مفید, به عنوان یک انرژی تمیز و قابل دسترس در همه جا استفاده کرد. اما از نور خورشید به طور مستقیم نمی توان به جای سوخت های فسیلی بهره برد بلکه باید دستگاههایی ساخته شود که بتوانند انرژی تابشی خورشید را به انرژی قابل استفاده نظیر انرژی مکانیکی, حرارتی الکتریسیته و ...تبدیل کنند.


مصارف انرژی خورشیدی :

1)گرم کننده ها مثل ابگرمکن خورشیدی که برای گرمای خانه ها و کوره های خوشیدی که برای ذوب فلزات حتی با دمای بالا نظیر اهن استفاده می شود و دمایی تا حدود 6000درجه سانتی گراد تولید می کنند.
2)دستگاههای اب شیرین کن که توسط اینه هایی نور خورشید را روی مخازن اب متمرکز می کنند تا کار تبخیر را انجام دهد.
3)الکتریسیته خورشیدی در این روش که نسبت به سایر روشها ارجحیت دارد.انرژی الکتریکی به سادگی قابل تبدیل به سایر انرژی ها بوده و می توان ان را ذخیره کرد.
طریقه دریافت الکتریسیته از انرژی خورشیدی :
1) نیروگاه های حرارتی که حرارت لازم توسط اینه هایی که نور خورشید را روی دیگ بخار متمرکز میکنند, تولید میشود.
2} اثر فتوولتایی:در این روش انرژی تابشی مستقیما به انرژی الکتریکی تبدیل میشود.قطعاتی که اثر فتوولتایی از خود نشان میدهند به سلول خورشیدی معروفند .
و در حال حاظر بیشترین استفاده از انرژی خورشیدی با این روش است.در برخی کشورها نیروگاه های فتوولتائیک ساخته شده که برای تولید برق است.
اما بیشترین استفاده از سلولهای خورشیدی در نیروگاه(( فتو ولتائیک50مگاواتی جزیره کرت یونان))است.

اساس کار سلولهای خورشیدی :
سلول خورشیدی عبارت از قطعات نیمرسانایی هستند که انرژی تابشی خورشید را به انرژی الکتریکی تبدیل میکنند.رسانندگی این مواد به طور کلی به دما ,روشنایی ,میدان مغناطیسی و مقدار دقیق ناخالصی موجود در نیم رسانا بستگی دارد.
از ویژگی های سلولهای خورشیدی میتوان به این موارد اشاره کرد:
جای زیادی اشغال نمی کنند .قسمت متحرک ندارند .بازده انها با تغییرات دمایی محیط تغییرات چندانی نمی کنند.نسبتا به سادگی نصب می شوند.به راحتی با سیستمهای به کار رفته در ساختمان جور می شوند.
همچنین از اشکالات سلولهای خوشیدی می توان به تولید وسایل فتوولتائیک که هزینه زیادی دارد و چگالی انرژی تابشی که بسیار کم است اشاره کرد که در فصول مختلف و ساعات متفاوت شبانه روز تغییر می كند که باید ذخیره شود و همین موضوع بسیار هزینه بر است.

کاربردهای سلولهای خوشیدی :
1)تامین نیروی حرکتی ماهواره ها و سفینه های فضایی
2)تامین انرژی لازم دستگاهایی که نیاز به ولتاژهای کمتری دارند مثل ماشین حساب و ساعت
3)تهیه برق شهر توسط نیروگاههای فتوولتائیک
4)تامین نیروی لازم برای حرکت خودروها و قایقهای کوچک
"نقاط کوانتومی" ؛ انقلابی که در انتظار صنعت سلولهای خورشیدی است
هیچ منبع قدرتی نظیر خورشید وجود ندارد اما تاکنون استفاده از این منبع ارزان و فراوان انرژی عملی نشده است که علت عمده آن گران بودن هزینه تولید و استفاده از سلولهای خورشیدی است. اکنون به نظر می رسد که فناوری نوینی موسوم به نقاط کوانتومی استفاده از انرژی خورشیدی را برای مصرف کنندگان امکانپذیر سازد.
به گزارش خبرگزاری مهر، سلول های نوری از نیمه هادی ها برای تبدیل انرژی نوری به جریان الکتریکی استفاده می کنند. در این فرآیند سیلیکن به عنوان عنصر اصلی وظیفه این تبدیل موثر را به دوش می کشد اما سلول های سیلیکنی برای استفاده در سطوح تولید انبوه نسبتا گران هستند. برخی نیمه هادی های دیگر که می توانند به عنوان فیلم های بسیار باریک مورد استفاده قرار گیرند، وارد بازار شده اند اما گرچه نسبت به سیلیکن ارزان تر هستند با این حال تاثیر گذاری آنها با سیلیکن قابل مقایسه نیست.
اما در کنار سایر فناوری هایی که پیش بینی می شود در سال 2007 ظهور پیدا کنند، ترکیب جدیدی ارایه شده است: برخی شیمی دانان فکر می کنند که نقاط کوانتومی که در حقیقت کریستال های بسیار کوچک نیمه هادی بوده و تنها چند نانومتر قطر دارند، می توانند حداقل استفاده از انرژی خورشیدی را از حیث صرف هزینه اولیه در فرآیند کسب و ذخیره سازی انرژی در مقایسه با استفاده از سایر سوخت ها مقرون به صرفه تر کنند

نقاط کوانتومی با استفاده از اندازه منحصربفردشان از قابلیت های مهمی برای برقراری تعامل نوری با منبع نور برخوردار هستند. در سیلیکن ها، یک فوتون نوری، یک الکترون از مدار اتمی اش رها می سازد. در اواخر دهه 90 میلادی آرتور نوزیک از محققان ارشد آزمایشگاه ملی منابع تجدید پذیرانرژی در کولورادوی آمریکا بر این فرض بود که نقاط کوانتومی مواد خاص نیمه هادی ها می توانند به هنگام برخورد با فوتون های دارای سطح انرژی بالا دو یا بیشتر الکترون آزاد کنند. این فرآیند را در پایانه های فوق بنفش و آبی طیف رنگی نیز مشاهده می کنیم.
در سال 2004 ویکتور کلیموف از آزمایشگاه ملی لوس آلاموس در نیومکزیکو نخستین اثبات تجربی را ارایه کرد که نشان داد نظریه نوزیک حقیقت دارد. سال بعد از آن وی نشان داد که نقاط کوانتومی به ازای هر فوتون می توانند به هنگام قرار گرفتن در معرض نور ماورای بنفش فوق العاده انرژیک، تا هفت الکترون تولید کنند. تیم تحقیقاتی نوزیک خیلی زود تاثیر شکل گرفته در نقاط کوانومی را که از سایر نیمه هادی ها همچون سولفید سرب نشات گرفته بودند، ثابت کرد.

البته این آزمایشات هنوز به تولید ماده ای مناسب برای استفاده تجاری منجر نشده است اما آنها پیشنهاد می کنند که نقاط کوانتومی روزی می توانند اثرگذاری تبدیل نورخورشید به الکتریسیته را تقویت کنند. زمانی که بتوان نقاط کوانتومی را با استفاده از واکنش های شیمیایی ساده تولید کرد، پس می توان سلول های خورشیدی را نیز با هزینه ای بسیار کمتر تولید کرد. محققان آزمایشگاه نوزیک که هنوزنتایج تحقیقاتشان منتشر نشده است، اخیرا تاثیر فوق الکترونی نقاط کوانتومی ساخته شده از سیلیکن را ثابت کرده اند. استفاده از این نقاط برای استفاده در سلول های خورشیدی در مقایسه با صفحات کریستالی سیلیکنی که امروزه مورد استفاده قرار می گیرند، ارزان ترتمام می شوند.
تا به امروز تاثیر فوق الکترونی تنها در نقاط کوانتومی جدا از یکدیگر مشاهده شده است. در حال حاضر مشکل این است که در یک سلول خورشیدی الکترون ها باید از نیمه هادی خارج و به مدار الکتریکی خارجی وارد شوند. برخی از این الکترون ها که در هر سلول نوری رها می شوند به صورت غیرقابل اجتنابی « گم » می شوند که در حقیقت از سوی « حفره های » مثبت واقع در نیمه هادی دوباره گرفته می شوند. در نقاط کوانتومی، این دوباره گرفته شدن بسیار سریعتر از فرآیندی که در قطعات بزرگتر یک نیمه هادی روی می دهد، شکل می گیرد. در این میان بسیاری از الکترون های رها شده بلعیده می شوند!
به هرحال باید پذیرفت که تولید تجاری سلول های خورشیدی نقاط کوانتومی در سال هایی دور صورت خواهد گرفت و باید همچنان متظر ماند.
محققان بازده سلول خورشیدی را افزایش دادند
یک کنسرسیوم اروپایی بازده سلول های خورشیدی سیلیکونی را به منظور کاهش هزینه تولید برق خورشیدی بهبود بخشیده است.
مرکز تحقیقات انرژی ای‌سی‌ان هلند اعلام کرد محققان بازده فرایند تبدیل (انرژی خورشید به برق) در سلول های خورشیدی سیلیکون "مالتی کریستالین ‪ "multicrystaline‬را ‪ ۱۸‬درصد افزایش دادند.
بازدهی برای منابع انرژی تجدیدشونده مانند باد، خورشید و سوخت های زیستی، بازدهی بسیار پراهمیت است و در کاهش هزینه‌ها و توانایی رقابت با سوخت های فسیلی نقش کلیدی دارد.
هزینه تولید برق خورشیدی در حال حاضر هشت برابر انرژی حاصل از سوخت های فسیلی است. درحالی که بازار سوخت های فسیلی سالانه ‪ ۳۰‬درصد رشد دارد، برق خورشیدی کمتر از یک درصد انرژی مصرفی جهان را تامین می‌کند.
تحقیقات سلول خورشیدی را کنسرسیومی مرکب از موسسه‌ها و شرکتهای اروپایی از جمله ‪ ECN‬در طرح "‪ "CrystalClear‬وبا هدف ساخت واحدهای خورشیدی سیلیکونی پر بازده و کم هزینه دنبال می‌کنند.
این کنسرسیوم همچنین فرایندی برای ساخت سلولهای خورشیدی بسیار کوچک ابداع کرده است که بازده مواد سیلیکونی بسیار خالص را بالا می‌برد.
سیلیکون ماده مورد استفاده در سلول فتوولتائیک (‪ (photovoltaic‬است که انرژی خورشید را به برق تبدیل می‌کند. بازار سیلیکون جهانی در اثر رقابت سازندگان سلول خورشیدی با بخش الکترونیک دچار کمبود این ماده شده است.
انتظار می‌رود تا سال ‪ ۲۰۰۸‬یعنی یک سال دیگر این کمبود برطرف شود. به اعتقاد این کنسرسیوم فناوری های جدید هزینه تولید سلول های خورشیدی را به نصف می‌رساند.بالا بردن حجم تولید نیز به کاهش هزینه‌ها کمک می‌کند.
شرکتهایی مانند شل سولار، بی‌پی سولار و موسسه‌های تحقیقاتی و دانشگاه های کشورهای بلژیک، فرانسه، آلمان، اسپانیا، هلند در این کنسرسیوم مشارکت دارند
سلول های خورشیدی استفاده فزاینده از الکتریسیته حاصل از آفتاب
فناوری فتوولتائیک بازاری است چند میلیارد دلاری در سرتاسر جهان
از شریل پلرین (1)
نویسنده کادر فایل واشنگتن

مسائل انرژی برای محیط زیست زمین حیاتی است. برای روز زمین 2005 – 22 آوریل – واشنگتن فایل یک سری گزارش در خصوص انرژی تجدید شونده، این عنصر امیدوار کننده در معادلات آتی انرژی تهيه کرده است.

واشنگتن – تبدیل آفتاب به انرژی – انرژی خورشیدی – از دست کم 1861 که اولین موتور خورشیدی در فرانسه به ثبت رسید برای بسیاری از مخترعین یک رویا بوده است. امروز، نوآوری ها، سرمایه گذاری ها، و پیشرفت های فنی و علمی فناوری هایی در زمینه انرژی خورشیدی به وجود آورده که با تولید اکتریسیته تاکید بر لزوم وجود زیرساخت ضروری الکتریکی را کاهش می دهند.

مهم ترین فناوری های موجود در زمینه انرژی خورشیدی فناوری های خورشیدی حرارتی، تمرکز انرژی خورشیدی، و فتوولتائیک هستند.

تجهیزات خورشیدی حرارتی از گرمای مستقیم خورشید استفاده کرده و از آن برای هر کاری، از گرم کردن استخرهای شنا گرفته تا تولید بخار در نیروگاه های برق استفاده می کنند.

نیروگاه هایی که انرژی خورشیدی را متمرکز می کنند با تبدیل آفتاب به حرارت های بالا توسط آینه های بزرگ و سپس انتقال انرژی این حرارت به ژنراتورهای معمولی برق تولید می کنند. این نیروگاه ها متشکل از دو بخش هستند – یکی که انرژی خورشیدی را جمع آوری و به حرارت تبدیل می کند، و دیگری که انرژی حرارتی را به الکتریسیته تبدیل می کند.

از دو شیوه حرارتی خورشیدی و تمرکز انرژی خورشیدی در سرتاسر جهان استفاده شده که این امر به رشد فناوری های تجدید شونده خورشیدی کمک می کند. اما سریع ترین روند رشد در این زمینه به فناوری فتوولتائیک مربوط می شود. این کلمه متشکل است از فتو به معنی نور و ولتائیک به معنی تولید ولتاژ.

سلول های فتوولتائیک از آفتاب سوخت می گیرند، نه از حرارت. این سلول ها که غالبا از سیلیکن نیمه هادی ساخته شده اند، نور آفتاب را مستقیما به برق تبدیل می کنند.

دن آرویزو (2) مدیر آزمایشگاه ملی انرژی تجدید شونده (3) وزارت انرژی ایالات متحده واقع در کلرادو می گوید، " فتوولتائیک فناوری بسیار زیباتری است. فتوولتائیک یکی از بزرگ ترین برنامه های در حال اجرای وزارت انرژی است. در واقع، بزرگ ترین برنامه ما در آزمایشگاه است."

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید