بخشی از مقاله
تابع متناوب
ممکن است فرمول ها در سایت نمایش داده نشود یا به هم ریخته باشد ولی در مقاله اصلی صحیح است
تعريف:
تابع f را متناوب گوئيم هرگاه وجود داشته باشد به طوري كه:
كوچكترين مقدار مثبت t را در صورت وجود با T نشان داده و به آن دوره تناوب اصلي تابع گوئيم ( و و t بستگي به x ندارد) به عبارت ديگر در تابع متناوب دوره تناوب عبارت است از كوچكترين مقدار مثبت كه وقتي به متغير اضافه شود مقدار تابع فرق نكند.
دورة تناوب روي نمودار: قسمتي از نمودار كه بر اساس آن بتوان قسمتهاي ديگر را رسم كرد.(الگويي از يك نمودار ميباشد)
دوره تناوب اساسي (اصلي) تابع زير را حساب كنيد.
مثال 1 :
مثال 2 :
مثال 3 :
مثال 4: دوره تناوب اصلي تابع را پيدا كنيد.
قرارداد:
هرجا صحبت از دوره تناوب مي كنيم منظور دوره تناوب اصلي يا كوچكترين دوره تناوب تابع است.
نكته 1: تابع ثابت متناوب است و هر عدد حقيقي مي تواند دوره تناوب آن باشد ولي كوچكترين دوره تناوب (دوره تناوب اصلي) ندارد.
نكته 2: در توابع ثابتي كه به طور متوالي و منظم ناپيوسته هستند فاصله دو نقطه انفصال متوالي دوره تناوب اصلي تابع است.
مثال 5 :
مثال 6 :
مثال 7:
نكته 3:ممكن است مجموع، تفاضل و… دو تابع كه هيچكدام متناوب نيستند متناوب باشد.
مثال 8: توابع هيچكدام متناوب نمي باشند ولي متناوب است، و ميباشد.
نكته 4:
اگر دوره تناوب تابع برابر باشد آنگاه دوره تناوب تابع برابر است.
نتيجه: دوره تناوب برابر و دوره تناوب برابر خواهد بود.
نكته 5:
هرگاه عبارت داده شده به صورت مجمع دو يا چند تابع متناوب باشد ابتدا دوره تناوب هريك را بدست آورده سپس بين آنها كوچكترين مضرب مشترك مي گيريم (ك.م.م)
مثال 9: دوره تناوب تابع با ضابطه كدام است؟
1) 2) 3) 4)
توجه:
در تعيين ك.م.م كسرها بايد بين صورتها ك.م.م. و بين مخرج ها ب.م.م بگيريم نسبت آنها جواب مسئله است.
مثال 10: دوره تناوب تابع كدام است؟
1)2 2)3 3)5 4)6
نكته 6:
در بدست آوردن دوره تناوب بهتر است در صورت امكان آن را با اعمال مثلثاتي به صورت ساده تري تبديل كرد سپس دوره تناوب شكل ساده شده را بدست مي آوريم.
مثال 11 :
بطور كلي براي نكته 5 و 6 داريم:
نكته 7: اگر تابع f متناوب و با دوره تناوب و تابع g متناوب با دوره تناوب بوده و عدد ثابت T وجود داشته باشد بطوري كه ( آنگاه T يك دوره تناوب براي هر دو تابع f و g و در نتيجه يك دوره تناوب براي توابع و و و ميباشد.
مثال 12: دوره تناوب را بدست آوريد:
نكته 8:
اگر باشد ظاهراً به نظر مي رسد دوره تناوب باشد ولي اگر عوامل كسر را بر تقسيم كنيم آنگاه كه در اين صورت دوره تناوب خواهد شد.
مثال 13: دوره تناوب اصلي تابع كدام است؟
1) 2) 3) 4)
نكته9: براي تعيين دوره تناوب اصلي توابع به فرمولهاي از فرمولهاي تبديل حاصل ضرب به حاصل جمع استفاده مي كنيم.
مثال 14: دوره تناوب اصلي تابع را بدست آوريد:
نكته 10:
دوره تناوب هر يك از سه تابع و و برابر است با
نكته 11:
دوره تناوب توابع بصورت ( و ) مساوي با است.
مثال 15: دوره تناوب برابر است.
نكته 12:
قضيه- تابع مركب fog را در نظر مي گيريم اگر g متناوب و با دوره تناوب T باشد آنگاه fog نيز متناوب بوده و دوره تناوب آن T يا است.
به عبارت ساده تر: اگر از يك تابع مركب، سينوس يا تانژانت يا كتانژا
نت يا Arc sin و Arc cos و Arc cot و Arc tan يا ريشه و يا لگاريتم گرفته شود دوره تناوب آن تغيير نخواهد كرد.
دوره تناوب زير را حساب كنيد:
:مثال 16
مثال 17:
مثال 18 :
مثال 19:
مثال 20 :
نكته 13: (مثال 20)
وقتي Sin و Cos با هم و يا tg و cotg با هم طرح مي شوند بايد دقت كنيد كه ممكن است دوره تناوب از آنچه به نظر مي رسد كوچكتر باشد. (كوچكتر ممكن است زماني اتفاق بيافتد كه تابع f زوج باشد).
نكته 14:
اگر تابع f متناوب باشد آنگاه نيز متناوب و داراي دوره تناوب و يا است.