دانلود مقاله دستور کار آزمایشگاه شیمی فیزیک ـ تجزیه

word قابل ویرایش
72 صفحه
8700 تومان

آزمایش ۱:
بررسی سیستم جامد و مایع و تحقیق در ایده‌آل بودن حلالیت نفتالین در بنزن
در بررسی تعادل سیستم‌های جامد ـ مایع که در واقع در آن گازهای جامد و مایع در حال تعادل هستند، از نظر تئوری به یک سری روابط ترمودینامیکی نیاز است که یکی بیان کننده پتانسیل شیمیایی یک سازنده خالص به حالت مایع یا پتانسیل شیمیایی آن در محلول است و دیگری ارتباط حرارتی انرژی آزاد است و بر مبنای آن روابط مول جزئی یک جسم خالص هنگامی که با محلول خود در حال تعادل باشد، با دمای شروع انجماد در محلول مورد بررسی قرار می‌گیرد. طبق روابط ترمودینامیکی می‌توان نوشت:

dE=dQ-dW
dQrev/T=dS dW=Pdv
dE=T.dS-PdV (1)
H=E+PV

(۲) → dH=dE+PdV+VdP → dH=T.dS-PdV+PdV+VdP
dH=T.dS+VdP
G=H-TS
(2) → dG=dH-TdS → dG=TdS+VdP-TdS-SdT

dG=VdP-SdT (3)
با توجه به اینکه G تابعی است که دیفرانسیل آن کامل می‌باشد، می‌توان رابطه زیر را نوشت:
dG=( )TdP+( )PdT
( )T=V (4)
( )S=-S (5)

چون آنتروپی هر ماده‌ای مثبت است، در این صورت علامت منفی در رابطه (۵) نشان می‌دهد که افزایش حرارت در فشار ثابت باعث افزایش انرژی آزاد خواهد شد. سرعت کاهش برای گازها که نسبت به مایعات و جامدات دارای آنتروپی زیاد می‌باشند، بیشتر است.
طق معادله (۴)، افزایش فشار در درجه حرارت ثابت سبب افزایش انرژی آزاد می‌شود. انرژی آزاد یک ماده خالص را می‌توان با انتگرال معادله (۳) در درجه حرارت ثابت و فشار یک اتمسفر برای هر فشار دیگری مانند P بدست آورد.

در نتیجه داریم:
dG=VdP

(۶)
در این رابطه، Go(T) عبارت است از انرژی آزاد ماده موردنظر در شرایط متعارفی، یعنی فشار یک اتمسفر که به آن انرژی آزاد استاندارد که تابعی از درجه حرارت است، نیز می‌گویند. حال اگر ماده موردنظر مایع یا جامد باشد، مقدار حجم مستقل از فشار است و می‌توان رابطه (۶) را بصورت زیر نوشت:
G(T,P)=Go(T)+V(P-1) (7)

چون حجم مایعات و جامدات کم است، رابطه (۷) بصورت زیر در‌می‌آید:
G(T,P)=Go(T)
که در واقع از وابستگی انرژی آزاد فشار صرف‌نظر شده است. می‌دانیم که حجم گازها در مقایسه با جامدات و مایعات به مقدار قابل توجهی بیشتر بوده و تا حدود زیادی به فشار بستگی دارد. با استفاده از رابطه (۶) برای یک باز ایده‌آل داریم:

G=Go(T)+ (nRT/P)dP
G/n=Go(T)/n)+ (RT/P)dP
G/n=Go(T)/n+RT1n(P(atm)/1(atm)) (9)
با توجه به اینکه پتانسیل شیمیایی، (μ) برابر انرژی آزاد مولی، یعنی G/n است. از رابطه (۹) نتیجه می‌شود:
μV= μoV(T)+RTlnP (10)
اگر دو فاز مایع و بخار با هم در حال تعادل باشند، باید پتانسیل شیمیایی هر سازنده مانند A در هر دو فاز مساوی باشد، یعنی:

μA1= μBV (11)
با قرار دادن رابطه (۱۱) در رابطه (۱۰)، خواهیم داشت:
μA1= μoAV(T)+RTLnPA (12)
اگر فاز مایع یک محلولی ایده‌آل باشد، طبق قانون رائول می‌توان نوشت:
PA=PoA.XA (13)

که در این رابطه PA فشار بخار A, XA مول جزئی در فاز مایع است، از قرار دادن معادله (۱۳) در معادله (۱۲) داریم:
μA1= μoAV +RT1n(PAo.XA)= μoAV+RTlnPoA+RTlnXA (14)
که در این رابطه μoAV+RTlnPoA مقدار ثابت، حال اگر جزء مولی A به سمت یک میل کند، مجموع فوق برابر پتانسیل شیمیایی جنس A به حالت مایع خالص است که آن را با μA نشان می‌دهیم. در این صورت:
μAl=μoAl+RTlnXA (15)

در مورد تعادل فازهای جامد ـ مایع، که موضوع مورد بحث در این آزمایش است، چون شرایط تعادل بین فازهای جامد A خالص و محلولی که شامل A می‌باشد، این است که پتانسیل شیمیایی در دو فاز جامد و مایع برابر باشد، یعنی μAl برابر باشد با μAS، در نتیجه رابطه کلی زیر برای تعادل فازهای جامد و مایع بدست می‌آید:
μAS=μoAl+RTlnXA → lnXA= μAS-μoAl/RT (16)
با قراردادن انرژی آزاد مولی به جای پتانسیل شیمیایی در رابطه (۱۶):
lnXA= GAS-GoAl/RT
با توجه به رابطه G=H-TS داریم:

-S=G-H/T
با قرار دادن انرژی آزاد مولی بجای پتانسیل شیمیایی در رابطه (۱۶):
lnXA= GAS-GoAl/RT
با توجه به رابطه G=H-TS داریم:
-S=G.H/T

با مشتق‌گیری G نسبت به T خواهیم داشت:

این رابطه را برای فازهای جامد و مایع در حال تعادل می‌توان به صورت زیر بکارد. برای یک ماده A در دو فاز مایع و جامد داریم:

با قرار دادن این مقادیر در مشتق رابطه انرژی آزاد داریم:

از انتگرال‌گیری رابطه فوق داریم:

که در آن XA مول جزئی جسم A در محلول ایده‌آل، ΔHf گرمای نهان ذوب ماده، R ثابت گازها، To درجه حرارت ماده خالص و T درجه حرارت انجماد ماده در محلول ایده‌آل است (بر حسب کلوین).
در این آزمایش، به منظور بررسی ایده‌آل بودن حلالیت در بنزین باید دو دیاگرام تجربی و تئوری از تغییرات logxN نسبت به ۱/T رسم کرد ه و از موازی بودن و نزدیک بودن دو منحنی تجربی و تئوری، ایده‌آل بودن محلول را می‌توان تحقیق نمود.

روش کار:
ابتدا مقدار ۵ گرم نفتالین را به دقت وزن کرده و در یک محلول آزمایش تمیز و خشک بریزید. توسط یک پی‌پت مدرج ۲ میلی‌لیتر بنزن به محتوی داخل لوله آزمایش بریزید (برای برداشت بنزن به هیچ‌وجه پی‌پت را نمکید). سپس لوله آزمایش را داخل بشر آب گرم قرار داده و با یک دماسنج (۰-۱۰۰oC) محتوی آن را به هم بزنید تا تمام نفتالین ذوب شده و یک محلول کدر شود (ذرات جامد نفتالین ظاهر شود). در این حال درجه کدر شدن (درجه حرارت اشباع محلول ۵ گرم نفتالین در ۲ میلی‌لیتر بنزن) یادداشت کنید (t1) مجدداً به محتوی لوله آزمایش توسط پی‌پت مدرج ۱ میلی‌لیتر بنزن اضافه کنید.

لوله آزمایش را داخل بشر آب گرم قرار داده، محلول را به هم بزنید تا کاملاً شفاف شود. سپس لوله آزمایش را از داخل بشر بیرون آورده، به هم زده، به محض کدرشدن محلول، درجه حرارت کدورات را یادداشت کنید (t2) (درجه حرارت اشباع محلول ۵ گرم نفتالین در ۳ میلی‌لیتر بنزن) تجربه سوم را مثل دو تجزیه دیگر به ازای افزایش ۱ میلی‌لیتر بنزن انجام دهید و درجه حرارت اشباع محلول ۵ گرم نفتالین را در ۴ میلی‌لیتر بنزن یادداشت کنید (t3). تجربه‌های ۴٫۵٫۶٫۷ را مانند تجربه‌های قبل هر بار به ازای افزایش ۱ میلی‌لیتر بنزن انجام دهید و درجه حرارت کدورات را در هر تجربه بدست آورید.

توجه: پس از یادداشت کردن دمای کدورت هر نمونه، مجدداً نمونه را گرم کرده تا محلول یکنواخت حاصل شود. سپس محلول نفتالین در بنزن را داخل شیشه‌ای که با برچسب نفتالین در بنزن مشخص شده، بریزید. هرگز محلول نفتالین در بنزن را داخل دستشویی نریزید، زیرا باعث بسته شدن لوله‌های فاضلاب خواهد شد.

محاسبات:
جدولی به ترتیب زیر تشکیل دهید و مقادیر تجربی حاصل از تجربه‌های ۱ تا ۷ را در آن منعکس کنید.
وزن نفتالین در ۱۰۰ml بنزن (گرم درجه حرارت اشباع (oC) حجم بنزن (ml) وزن نفتالین (gr) شماره تجربه

مایش تغییرات غلظت محلول اشباع شده نسبت به درجه حرارت را روی کاغذ میلی‌متری رسم نمایید.
جدولی به ترتیب زیر تشکیل دهید و مقادیر تجربی حاصل از تجربه ۱ تا ۷ را در آن منعکس نمایید.
۱/T شماره (K-1) درجه حرارت اشباع (oC) logx جزء مولی نفتالین تجربه

نمایش تغییرات logx را نسبت به ۱/T رسم کنید.
ضریب زاویه نمایش تغییرات logx را نسبت به ۱/T مشخص و از روی آن Lf (گرمای نهان ذوب مولی نفتالین) را محاسبه کنید. آیا عدد بدست آمده با مقدار واقعی مطابقت دارد؟
T0 نقطه ذوب نفتالین را بدست آورید و با مقدار واقعی تطبیق دهید.
چرا در این آزمایش، وزن نفتالین را ثابت اختیار نموده و حجم بنزن را تغییر می‌دهید و به روش عکس عمل نمی‌نمایید، یعنی بر حجم ثابتی از بنزن وزن‌های مختلف از نفتالین نمی‌افزایید؟
آزمایش ۲:
تعیین جرم مولکولی بوسیله تقطیر بخار آب
انحلال بعضی از مایعات در یکدیگر آنقدر ناچیز است که می‌توان آنها را عملاً غیرقابل حل در یکدیگر تلقی نمود. البته باید فراموش کرد که عدم انحلال مطلق دو مایع در یکدیگر صحیح نمی‌باشد. در چنین سیستم‌هایی هر مایع از لحاظ فشار بخار جزئی مربوط به طور مستقل عمل کرده و لذا فشار بخار کل برابر می‌شود با مجموع فشار دو یا چند مایع غیرقابل حل که سیستم را تشکیل می‌دهند. بدین ترتیب ترکیب فاز بخار به آسانی قابل محاسبه است. اگر سیستمی مرکب از دو مایع باشد و Pa, Pb به ترتیب نمایش فشار بخار مایعات P, a, b فشار بخار کل باشد، رابطه زیر برقرار است:

P=Pa+Pb (1)
هر مایع موقعی خواهد جوشید که فشار برابر با فشار اتمسفر شود. به همین ترتیب دو مایع غیرقابل حل نیز هنگامی که فشار بخار آنها برابر با فشار آتمسفر می‌شود، به جوش می‌آید (نقطه جوش مخلوط پایین‌تر از نقطه جوش مایع دیرجوش‌تر واقع می‌گردد). چون فشار بخار کل مستقل از مقدار نسبی دو مایعی است که سیستم تشکیل می‌دهد و بنابراین در نقطه جوش ترکیب فاز بخار و ترکیب مایع مقطر مادام که در ظرف تقطیر هر دو مایع وجود دارد، دما ثابت باقی خواهد ماند. هنگام جوش درجه حرارت ثابت باقی می‌ماند، اما به محض تمام شدن یکی از دو ماده نقطه جوش مایع به سمت نقطه جوش مایع باقی مانده میل کرده و این عمل با سرعت زیاد اتفاق می‌افتد. با توجه به رابطه (۱) ملاحظه می‌شود که نقطه جوش مخلوط دو مایع غیرقابل حل، پایین‌تر از هر یک از دو مایع به تنهایی است، زیرا همانطور که ذکر شد، فشار بخار هر یک مستقل از دیگری عمل می‌کند و اگر na و این nb تعداد مول‌های دو مایع بخار شده و xa, xb مول جزئی هر یک آن دو باشد، طبق قانون فشارهای جزئی دالتون می‌توان روابط زیر را بیان نمود:

Pa= xa.P=na/n.P (2)
Pb= xb.P=na/n.P (3)
که P و n فشار بخار کل و مول کل می‌باشد. از تقسیم دو رابطه فوق بر هم، نتیجه می‌شود:
Pa/Pb=(na/n.P)/nb/n.P)=na/nb (4)
تعداد مول برابر است با جرم، تقسیم بر جرم مولکولی، از این رو:
Pa/Pb=(Wa/Ma)/(Wb/Mb) (5)
که Wa, Wb جرم هر یک از دو بخار و Ma, Mb جرم مولکولی هر یک از آنها می‌باشد.
Wa/Wb=Pa.Mb/Pb.Mb (6)

چنانچه Pb فشار بخار آب باشد، با مشخص شدن فشار جزئی بخار آب در نقطه جوش می‌توان جرم مولکولی ماده a را تعیین نمود. فشار بخار آب در دماهای مختلف به صورت جداولی در کتاب شیمی فیزیک وجود دارد و در آزمایشگاه نیز جدولی به این منظور فراهم گردیده است.
در این آزمایش، یک مایع آلی که غیرقابل حل در آب است، توسط بخار آب تقطیر می‌شود. می‌توان به جای آب از مایع دیگری استفاده نمود، اما به علت فراوانی و ارزانی معمولاً برای تعیین جرم مولکولی با این روش از آب استفاده می‌شود. برای اینکه تقطیر توسط بخار آب با بهره بالا همراه باشد، شرایط زیر لازم است:
۱٫ وزن مولکولی مایع موردنظر خیلی بزرگتر از آب باشد.

۲٫ مایع موردنظر در آب کاملاً غیرقابل حل باشد.
۳٫ فشار بخار مایع موردنظر در حوالی ۱۰۰ درجه سانتیگراد قابل ملاحظه باشد.
روش کار:

۴/۳ ظرف تولید بخار را از آب مقطر پر نمایید و طبق شکل ۱، دستگاه را سوار کنید. حدود ۱۸۰ میلی‌لیتر مایع آلی مجهول همراه با ۲۵ میلی‌لیتر آب در بالن دو دهانه بریزید. یک لوله شیشه‌ای برای ثابت بودن فشار بخار آب در ظرف تولید بخار نصب کنید. جریان آب را به مبرد وصل نموده و ظرف آب مقطر را حرارت دهید. حرارت وارده، آب را بخار نموده و بخار آب از طریق لوله رابط به بالن دو دهانه جریان یافته و باعث جوش و بالاخره تقطیر مخلوط آب و ماده آلی می‌شود.

حدود ۱۵ میلی‌لیتر ماده تقطیر شده در آغاز آزمایش را جدا کرده و در یک دیکانتور بریزید (چرا؟). پس از رسیدن سیستم به دمای ثابت، دما را یادداشت کنید. ۱۰۰ میلی‌لیتر از مایع تقطیر شده را در یک استوانه مدرج ۱۰۰ میلی‌لیتری جمع‌آوری نمایید. مایع جمع‌آوری شده مخلوطی از ماده آلی و آب می‌باشد که به ترتیب جرم مخصوص بر روی یکدیگر قرار می‌گیرند. آن را مدتی به حالت سکون نگهدارید تا کاملاً از یکدیگر جدا شوند. حجم هر فاز را تعیین کنید. همچنین فشار آزمایشگاه و فشار بخار آب را از روی جدول و دانسیته ماده آلی مجهول را یادداشت نمایید.

محاسبات:
با مشخص بودن حجم ماده آلی و آب تقطیر شده و دانسیته هر یک، جرم آنها را محاسبه کنید. همچنین با تعیین دمای جوش و فشار بخار آب در این درجه حرارت و با مشخص بودن فشار کل از بارومتر، فشار بخار مایع آلی را محاسبه کنید.
با استفاده از رابطه (۶)، جرم مولکولی ماده آلی را تعیین کنید.

شکل ۱، دستگاه تقطیر با بخار آب

آزمایش ۳
فعالیت نوری (پلاریمتری)
نور دارای دو خاصیت ذره‌ای و موجی است. خاصیت ذره‌ای در مبحث فتوشیمی و خاصیت موجی در آزمایش نوری کاربرد دارد. بر طبق تئوری موجی نور از طریق حرکت موجی منتشر شده و توسط طول موج و صفحه نوسان مشخص می‌شود. ارتعاش‌های نور عرضی بوده و بردار ارتعاشی در روی صفحه موج قرار دارد. یعنی هر شعاع نورانی در هر لحظه روی صفحه‌ای که عمود بر امتداد فشار نور است، ارتعاش می‌کند، اما چون در روی هر سطح بی‌نهایت امتداد وجود دارد و امتداد ارتعاش نور در نور طبیعی از دو ارتعاش عمود بر هم تشکیل یافته است و اگر هر یک از این دو ارتعاش به طریقی حذف شوند، نور باقی مانده را نور پلاریزه شده می‌نامند.

بنابراین از هر شعاع نور طبیعی، می‌توان دو شعاع نور پلاریزه تهیه نمود که در دو جهت عمود بر هم ارتعاش می‌نمایند. بهترین طریقه تهیه نور پلاریزه، استفاده از انکسار مضاعف در بلورهای کربنات کلسیم و یا کوارتز می‌باشد. هرگاه یک دسته شعاع نور طبیعی به بلور منشوری شکل کربنات کلسیم و یا کوارتز (SiO2 ) می‌باشد. هرگاه یک دسته شعاع نور طبیعی به بلور منشوری شکل کربنات کلسیم بتابد، قسمتی منعکس شده و قسمتی دیگر به دو دسته شعاع متمایز منعکس می‌شود. این پدیده را انکسار مضاعف می‌نامند. هر دو شعاع تولید شده که در دو صفحه عمود بر هم ارتعاش می‌کند، نور پلاریزه هستند. تنها مساله در اینجا، حذف یکی از دو شعاع نور پلاریزه می‌باشد.

این مطلب برای اولین بار توسط ویلیام نیکل در سال ۱۸۲۸ حل گردید. نیکل یک منشور کلسیت را از امتداد قطر AB بریده و سپس دو نیمه منشور را توسط چسب کانادایی که ماده کاملاً شفافی است، به هم متصل نموده و در ضمن زوایای روبروی محور بریده شده را دقیقاً به مقدار ۶۸ درجه برش داد. تجربه نشان می‌دهد که هرگاه یک شعاع نورانی به نیمه اول منشور نیکل بتابد، دو شعاع نور پلاریزه تولید می‌کند که یکی از آنها از غشاء چسب عبور کرده و پس از عبور از نیمه دوم منشور خارج می‌گرد، ولی شعاع نور دوم نور پلاریزه وقتی با چسب برخورد می‌کند، انعکاس کامل پیدا کرده و در دیوارهای بالا و پایین منشور که به رنگ سیاه است، جذب شده و از محیط عمل حذف می‌گردد.

یک جسم فعال نوری، جسمی است که بتواند سطح نور پلاریزه را چرخش دهد، یعنی وقتی یک شعاع پلاریزه که در صفحه مشخصی نوسان می‌کند، از یک جسم فعال نوری عبور می‌کند. پس از خروج از جسم در صفحه دیگری نوسان خواهد کرد و دو صفحه با هم زاویه خاص تشکیل می‌دهند. بعضی از اجسام فعال نوری سطح نور پلاریزه را به سمت چپ (خلاف جهت عقربه‌های ساعت) و بعضی به راست دوران می‌دهند. در حالت اول، جسم را چپ‌بر و در حالت دوم، جسم را راست‌بر می‌نامند. گاهی اجسام چپ‌بر را با علامت منفی و اجسام راست‌بر را با علامت مثبت نشان می‌دهند.

اجسامی که به صورت محلول دارای عدم تقارن ساختمان مولکولی هستند، می‌توانند سطح نور پلاریزه را دوران دهند. یکی از انواع عدم تقارن به خصوص در مواد آلی، کربن نامتقارن می‌باشد که می‌توانند از نظر نور پلاریزه فعال باشند. به هرحال، مقدار چرخشی که صفحه نور پلاریزه هنگام برخورد و عبور از یک جسم فعال نوری نسبت به سطح قبلی خود ایجاد می‌کند را دوران مخصوص می‌نامند و مقدار آن توسط رابطه زیر بیان می‌شود:

[ ] Dt=100 λ /L.C (1)
که t درجه حرارت محیط اندازه‌گیری (معمولاً ۲۰ درجه سانتیگراد)، D طول موج نور بکار رفته (معمولاً نور زرد تک رنگ سدیم با طول موج ۵۸۹۰ آنگسترم)، λ زاویه دوران (مقدار بدست آمده از پلاریمتر)، L طول لوله حاوی محلول را بر حسب دسیمتر و C غلظت محلول مورد اندازه‌گیری بر حسب گرم ماده در ۱۰۰ میلی‌لیتر می‌باشد. به این ترتیب چنانچه مقدار دوران مخصوص ماده در دسترس باشد، می‌توان با اندازه‌گیری مقدار چرخش نور در پلاریمتر، غلظت محلول را توسط رابطه فوق بدست آورد.

دستگاه اندازه‌گیری:
دستگاه اندازه‌گیری، پلاریمتر بوده و اجزای آن در شکل زیر نشان داده شده است.
دستگاه شامل منبع نوری S معمولاً چراغ سدیم و عدسی F می‌باشد که نور سدیم را به یک دسته اشعه موازی تبدیل می‌کند. اشعه موازی از منشور P (یک منشور نیکل) می‌گذرد. این منشور همانطور که قبلاً گفته شد، خاصیت پلاریزه کردن نور را دارد. نور پلاریزه شده از مانع C که فقط نصف میدان اشعه را اشغال می‌کند، می‌گذرد. مانع C از کواترز ساخته شده و نصف نور پلاریزه شده پس از عبور از آن اختلاف فازی به اندازه نصف طول موج با نصف دیگر پیدا می‌کند. این دو دسته اشعه آنگاه از لوله R که محتوی لوله مورد آزمایش است، عبور

می‌نماید و در خاتمه به منشور دوم (A) می‌رسد. این منشور می‌تواند با ۳۶۰ درجه دوران کند. دوران منشور A (که آنالیزر نام دارد) در یک جهت به طوری که در موقعیت مناسبی قرار گیرد، باعث تاریکی یک نیمه‌شب و روشنی نیمه دیگر می‌شود. دوران منشور فوق در جهت دیگر محل تاریکی و روشنی این دو نیمه میدان دید را عوض می‌‌کند. برای اندازه‌گیری زاویه دوران ماده منشور A را آنقدر باید دوران داد تا شدت نور در دو قسمت تاریک و روشن میدان دید یکسان شود و در ضمن با کوچکترین حرکت منشور دو نیمه تاریک و روشن ایجاد گردد.

شکل ۲، اجزای نور یک پلاریمتر

روش کار:
پلاریمتر را به برق وصل نموده و آن را روشن نمایید. معمولاً حدود ۱۰ دقیقه وقت لازم است تا دستگاه گرم شود. لوله حاوی را با آب مقطر کاملاً بشویید. دهانه لوله این لوله بوسیله پیچی فلزی باز می‌شود و بین این پیچ و لوله یک قطعه شیشه مسطح دایره‌ای شکل قرار دارد. دقت نمایید تا هنگام شستشو و بستن پیچ این شیشه نشکند. لوله را از آب مقطر پر کنید. دقت کنید که هیچ‌گونه حباب هوا داخل لوله باقی نماند. شیشه مسطح را بعد از پر کردن باید طوری قرار دارد که در زیر آن حبابی وجود نداشت باشد، آنگاه پیچ را روی شیشه

مسطح محکم کنید. در اینجا باید دقت کافی بکار برد و به آرامی پیچ را دوران داد تا شیشه نشکند. بعد از این اعمال، دو طرف لوله (دو شیشه مسطح در دو طرف لوله) را با دستمال کاغذی تمیز کرده و سپس لوله را در پلاریمتر به صورتی قرار دهید تا یک سر لوله به عدسی چشم چسبیده باشد. سرپوش لوله را ببندید. انتهای پلاریمتر دارای سه عدسی است. در عدسی وسط تصویر قسمتی از نور زرد سدیم که از مایع کوارتز و مایع مورد اندازه‌گیری گذشته دیده می‌شود. این عدسی دارای دو پیچ تنظیم است.

پیچ انتهایی که برای روشن کردن و میزان نمودن تصویر و پیچ دیگر، در قسمن منشور A را دوران می‌دهد. تصویری که در این عدسی دیده می‌شود، دارای دو قسمت تاریک و روشن است. پیچ را باید آنقدر دوران داد که این دو ناحیه از نظر روشنی قابل تشخیص از هم نباشد. همچنین با کوچکترین دوران این پیچ نواحی تاریک و روشن را عوض می‌کند. بعد از میزان شدن دستگاه، مقدار دوران را می‌توان در یکی از دو عدسی چپ و یا راست قرائت نمود. طریقه خواندن و رابطه بین درجه‌های دو عدسی به شرح زیر است:

صفحه مدرج وسی متصل است در طرفین صفحه مدرج و یا اختلاف ۱۸۰ درجه دو عدسی چپ و راست قرار دارند. هنگامی که عدسی راست صفر است، عدسی چپ ۱۸۰ و چنانچه عدسی راست ۶ درجه باشد، عدسی چپ ۱۸۶ را نشان خواهد داد. به هرحال، تفاوت این دو عدسی، ۱۸۰ درجه می‌باشد. بنابراین از هر دو عدسی برای تعیین زاویه دوران می‌توان استفاده نمود، ولی باید حاصل را نسبت به مبداء صفر دستگاه محاسبه کرد. چنانچه عددی از عدسی راست خوانده شود، دو حالت پیش می‌آید:

الف) عدد بین ۰٫۱۸۰ درجه است. در این صورت چرخش به سمت راست بوده و همان عدد گزارش می‌شود.
ب) عدد بین ۱۸۰٫۳۶۰ درجه است. در این صورت چرخش به سمت چپ بوده و باید ۳۶۰ درجه از این مقدار کم نموده و عدد حاصل که منفی است، باید گزارش شود.
در صورتی که عدد در عدسی چپ خوانده شود، در ابتدا ۱۸۰ درجه را ازد آن کم کرده تا عدد بر حسب عدسی راست شود و سپس مانند حالت (الف) و (ب) عمل گردد.
دقت دستگاه تا یک صدم درجه می‌باشد. اعشار درجه از روی ورنیه که در عدسی چشمی وجود دارد، خوانده می‌شود. برای تنظیم و کالیبره نمودن پلاریمتر از آب مقطر استفاده می‌گردد تا صفر دستگاه معین شود. زاویه دوران محلول‌های ۲٫۴٫۶٫۸٫۱۰ درصد گلوکز در آب (و یا نمونه داده شده) را تعیین نمایید. هر قرائت را برای دقت بیشتر چندین بار تکرار کنید.
محاسبات:

با استفاده از زاویه دوران، دوران مخصوص کلوگز را توسط رابطه (۱) محاسبه کنید. میانگین دوران مخصوص را تعیین نمایید. اختلاف دوران‌های مخصوص به نظر شما چه علتی می‌تواند داشته باشد‌؟ دقت زاویه دوران در درجه اول بستگی به پلاریمتر مورد استفاده دارد. با توجه به این موضوع با چه دقتی می‌توانید زاویه دوران را اندازه بگیرید؟ با چه دقتی باید سه نمونه قند را توزیع نمود تا خطای آن کمتر از خطای حاصل از اندازه‌گیری زاویه دوران شود؟
چنانچه رابطه دوران مخصوص ساکاروز با درجه حرارت برای نور سدیم طبقه رابطه زیر باشد:
[ ] Dt=66.5[1-0.0004(t-20o)]
آیا تغییرات جزئی درجه حرارت تاثیری در مقدار زاویه دوران خواهد داشت؟ این موضوع را با محاسبه نشان دهید. تغییرات بیشتر دما چطور؟

آزمایش ۴
اندازه‌گیری گرمای انحلال (به روش حلالیت)
آنتالپی انحلال، برخی از اجسام مانند اسید سولفوریک، سود، پتاس و … عمل انحلال آنها در آب، با ایجاد گرما توام است و چون سرعت ایجاد گرما در اثر انحلال بیش از سرعت انتقال آن از محلول حاصل به محیط خارج می‌باشد، محلول گرم می‌شود تا آنکه با گذشت زمان، به تدریج محلول گرما را به محیط خارج منتقل کرده و سرانجام به دمای محیط می‌رسد.
در مقابل، برخی اجسام دیگر، مانند یدور پتاسیم، نیترات آمونیوم و … عمل انحلال آنها در آب، با جذب گرما صورت می‌گیرد و این گرما به مصرف انرژی جنبشی مولکول‌های آب تامین می‌شود و چون سرعت مصرف گرمای لازم برای انحلال بیش از سرعت جذب گرما توسط محلول به محیط خارج می‌باشد، محلول سرد می‌شود. محلول با گذشت زمان، به تدریج نقصان دمای خود نسبت به محیط خارج را با گرفتن گرما از آن جبران کرده و سرانجام به دمای محیط می‌رسد. بدین ترتیب ممکن است انحلال بسته به ماهیت جسم حل شده و حلال، گرمازا یا گرماگیر باشد.

اجسامی که هنگام حل شدن در آب ایجاد گرما می‌کنند، فرآیند انحلال آنها، ایجاد ترکیبی بین آنها و مولکول‌های آب می‌باشد. مثلاً: انحلال اسید کلریدریک در آب با ایجاد یون هیدروژن هیدراته موسوم به یون هیدرونیوم همراه است، به نحوی که می‌توان عمل انحلال را که واکنشی است گرمازا، به صورت رابطه زیر ارائه نمود:
HCL + H2O → H3O+Cl-
اما به هنگام انحلال اسیدسولفوریک، علاوه بر یون‌های هیدورژن، یون‌های سولفات نیز با مولکول‌های آب ترکیب شده و به صورت یون‌های سولفات هیدراته درمی‌آیند، به نحوی که می‌توان عمل انحلال را به صورت زیر ارائه داد:

H2SO4 + 3H2O → ۲H3O+ + (SO4, H2O)2-
به طور کلی اتصال بین مولکول‌های آب و یون‌ها، همواره یک پدیده گرمازاست. خواه از نوع اتصال هیدروژنی باشد که بین مولکول‌های آب و آنیون‌ها برقرار می‌گردد،‌ خواه از نوع اتصال هم‌یونی باشد که بین مولکول‌های آب و برخی از کاتیون‌ها بوجود می‌آید و خواه از نوع اتصال الکترواستاتیک باشد که بین مولکول‌های آب و برخی دیگر از کاتیون‌ها رخ می‌دهد.
بنابراین به طور کلی، انحلال نمک‌های یون‌های حاصل از تفکیک آنها با مولکول‌های آب پیوند شده و به صورت یون‌های هیدراته درمی‌آیند، پدیده‌ای است گرمازا، از جمله می‌توان سولفات مس سفید را نام برد که واکنش انحلال آن در آب به صورت رابطه زیر ارائه می‌گردد:

CuSO4+5H2O → (Cu, 4H2O)2++(SO4, H2O)2-
و باالعکس، نمک‌هایی که یون‌های حاصل از تفکیک آنها با مولکول‌های آب ترکیب نمی‌شوند، انحلالشان در آب، گرماگیر است، زیرا در این حالت انحلال فقط عبارت است از جدا شدن یون‌های مثبت و منفی از یکدیگری و چون انرژی لازم برای انجام این جدایی، یعنی انرژی لازم برای مقابله با نیروی جاذبه به الکترواستاتیک موجود بین یون‌های مثبت و منفی توسط مولکول‌های آب و یا در اختیار گذاردن مقداری انرژی سینتیک مولکول‌های آب، تامین می‌گرد، سبب می‌شود که سرعت حرکت‌ مولکول‌های آب نقصان یافته و در نتیجه، محلول سرد شود. به عنوان نمونه، می‌توان انحلال یدور پتاسیم را نام برد (KL→K++I-). نمک‌هایی که در انحلال خود، هر دو کیفیت، به وقوع می‌پیوندد، آنچه که به عنوان حرارت انحلال اندازه‌گیری می‌شود، حرارتی است که پس از بدست آمدن محلول (یعنی پس از انجام هر دو کیفیت) با محیط خارج مبادله می‌گردد.

توجه کنید که انحلال یک ماده در یک حلال، حالت خاصی از یک تعادل شیمیایی است و تغییرات حلالیت یک جسم بر حسب دما در یک حلال از رابطه زیر پیروی می‌کند:
(۱)
چنانچه ΔH مستقل از تغییر درجه حرارت باشد، می‌توان از رابطه (۱) انتگرال
گرفت:
(۲)
C ثابت انتگرال است. می‌توان انتگرال فوق را در دو حد ۱٫۲ انجام داد و به رابطه زیر رسید:
(۳)
که S1, S2 به ترتیب حلالیت در دو درجه حرارت‌های HΔ, T1, T2 میانگین گرمای انحلال بین دو درجه حرارت ذکر شده و R ثابت گازها بر حسب کالری بر مول بر درجه حرارت است. حلالیت بر حسب گرم یا تعداد مول ماده حل شده در ۱۰۰ گرم حلال بیان می‌شود.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
wordقابل ویرایش - قیمت 8700 تومان در 72 صفحه
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد