بخشی از مقاله

مشاهده اكسيژن در فتوسنتز


اکسیژن
اکسیژن یا ترشمایه یکی از عناصر شیمیایی در جدول تناوبی است که نماد آن O و عدد اتمی آن ۸ است. یک عنصر زیستی بوده و همه جا چه در زمین و چه در کل جهان هستی یافت می‌شود. مولکول اکسیژن (O۲)در زمین از نظر گرماپویایی (ترمودینامیکی) ناپایدار است ولی توسط عمل نورساخت (فتوسنتز) باکتری‌های بی هوازی و در مرحله بعدی توسط عمل نور ساخت گیاهان زمینی به وجود می‌آید.

اکسیژن در دما و فشار استاندارد به صورت گاز است که حاوی دو اتم اکسیژن به فرمول شیمیایی O۲ است. اکسیژن عنصر مهم هوا است و از طریق ع

مل نورساخت (فتوسنتز) گیاهان تولید شده و برای تنفس حیوانات لازم است. واژه اکسیژن در دو واژه یونانی Oxus(ترش) و Gennan (زایش) ساخته شده است یعنی چیزی که از آن ترشی پدید می‌آید. در پارسی می‌توان برای آن واژه ترشمایه را بکار برد. (برابرهای زبانهای دیگر برای واژه اکسیژن مثلآ آلمانی Sauerstoff و هلندی zuurstof هم دقیقآ همین معنی ترشمایه را می‌دهد). اکسیژن مایع و جامد رنگ آبی کمرنگ داشته و هر دو بسیار پارامغناطیس می‌‌باشند. اکسیژن مایع معمولاً با عمل تقطیر جزئی هوای مایع به دست می‌آید.

فتوسنتز

زندگی در روی کره زمین به انرژی حاصل از خورشید وابسته است. فتوسنتز تنها فرایند مهم بیولوژیکی است که می‌تواند از این انرژی استفاده کند. علاوه بر این بخش عمده‌ای از منابع انرژی در این سیاره ناشی از فعالیتهای فتوسنتزی انجام شده در این زمان یا در زمانهای گذشته می‌باشد. فعال‌ترین بافت فتوسنتزی گیاهان عالی مزوفیل برگ است. سلولهای مزوفیل دارای تعداد زیادی کلروپلاست هستند که حاوی رنگدانه‌های سبز ویژه‌ای به نام کلروفیل برای جذب نور می‌باشند.

در فتوسنتز انرژی خورشیدی برای اکسیداسیون آب ، آزاد کردن اکسیژن و نیز احیا کردن دی‌اکسید کربن به ترکیبات آلی و در نهایت قند بکار می‌رود. این مجموعه از کارها را واکنشهای نوری فتوسنتز می‌نامند. محصولات نهایی واکنشهای نوری برای ساخت مواد قندی مورد استفاده قرار می‌گیرد که به مرحله ساخت قندها واکنشهای تاریکی فتوسنتز گفته می‌شود. محل انجام واکنشهای نوری و تاریکی در داخل کلروپلاست متفاوت است.

رنگدانه‌های فتوسنتزی

انرژی نور خورشید ابتدا بوسیله رنگدانه‌های نوری گیاهان جذب می‌شود. همه رنگدانه‌هایی که در فتوسنتز فعالیت دارند در کلروپلاست یافت می‌شوند. کلروفیلها و باکترو کلروفیلها که در بعضی از باکتریها یافت می‌شوند رنگدانه‌های رایج موجودات فتوسنتز کننده هستند. البته همه موجودات فتوسنتز کننده دارای مخلوطی از بیش از یک رنگدانه هستند که هر کدام عمل خاصی را انجام می‌دهند. از دیگر رنگدانه‌ها می‌توان به کاروتنوئیدها و گرانتوفیل اشاره کرد.

کلروپلاست محلی است که در آن فتوسنتز صورت می‌گیرد
برجسته‌ترین خصوصیت ساختمانی کلروپلاست ، سیستم فشرده غشاهای درونی است که به تیلاکوئید معروف است. کل کلروفیل در این سیستم غشایی که محل واکنش نوری فتوسنتز است قرار گرفته است. واکنشهای احیای کربن یا واکنشهای تاریکی در استروما (ناحیه‌ای از کلروپلاست که بیرون تیلاکوئید قرار گرفته است) صورت م

ی‌گیرند. تیلاکوئیدها خیلی نزدیک به یکدیگر قرار دارند که به تیغه‌های گرانا موسومند.


واکنشهای نوری فتوسنتز
علوم طبیعت > زیست شناسی > علوم گیا

هی > فیزیولوژی گیاهی
علوم طبیعت > زیست شناسی > علوم گیاهی > ریخت شناسی گیاهی
علوم طبیعت > زیست شناسی > علوم گیاهی > مورفولوژی گیاهی
(cached) مقدمه
فتوسنتز یکی از فرایندهای حیاتی گیاهان است که غذا و انرژی مورد نیاز گیاهان و سایر موجودات زنده را تامین می‌کند. این فرایند در دو مرحله انجام می‌شود. مرحله اول که واکنشهای نوری است. در این مرحله که با استفاده از انرژی نور و حضور آب ، منجر به تولید NADPH و ATP و تصاعد گاز اکسیژن می‌شوند در دستگاه یا ماشینهای فتوسنتزی به کمک رنگیزه‌های اصلی و فرعی انجام می‌گیرند.

واکنشهای نیازمند به نور در گیاهان سبز و جلبکها بوسیله دو سیستم گیرنده نور به نامهای فتوسیستم I و فتوسیستم II انجام می‌گیرد. بعد از این مرحله واکنشهای بی‌نیاز به نور فتوسنتز انجام می‌شود که انجام آنها به حضور یا عدم حضور نور وابسته نیست. طی این مرحله با استفاده از انرژی تولید در شده در مرحله نوری فتوسنتز کار تثبیت دی‌اکسید کربن و تولید قندها انجام می‌شود.



سیستمهای گیرنده نور
برای انجام واکنشهای نوری به همکاری دو گروه مشخص از رنگیزه به نام فتوسیستم (PS) یا سیستم نوری نیاز است. در سیستم نوری I مرکز واکنش یا رنگیزه فعال کلروفیل a است که اوج جذبی آن درطول موج 730 نانومتر است و از این رو P700 نامیده می‌شود. مرکز واکنش یا رنگیزه فعال سیستم نوری II کلروفیل P680 است که اوج جذبی آن در 682 نانومتر است.

در هر دوسیستم ، کلروفیلها همراه با رنگیزه‌های فرعی یک تله گیرنده‌ای را تشکیل می‌دهند که نور را به دام می‌اندازد. در سیستم نوری II علاوه بر رنگیزه اصلی P680 رنگیزه فرعی a672 و کلروفیل b و فیکوبیلین‌ها و بعضی از کاروتنوئیدها قرار دارند. سیستم نوری I نیز علاوه بر رنگیزه اصلی P700 دارای رنگیزه فرعی کلروفیل b به مقدار کمتر از سیستم II همچنین رنگیزه‌های فرعی a مثل a684 نیز هست.
چگونگی نقل و انتقال الکترون در سیستم نوری II
با برخورد فوتونهای نور به برگ گیاه ، ابتدا نخستین تله گیرنده نور یعنی مولکول P680 که در مرکز سیستم نوری II برانگیخته شده، الکترون خود را از دست می‌دهد و به صورت یونی مثبت درمی‌آید. این الکترونهای آزاد شده از P680 که انرژی زیادی دارند بلافاصله بوسیله یک سری از مواد انتقال دهنده مانند سیتوکرومها و کینونها که در مجاورت کلروفیل و در غشای تیلاکوئیدی زنجیروار به دنبال هم قرار گرفته‌اند منتقل می‌شود. الکترونهای آزاد شده از مولکول برانگیخته انرژی زیادی دارند و به تدریج با احیا و اکسید شدن مواد ناق

ل زنجیره الکترون انرژی خود را از دست می‌دهند و سرانجام به مولکول پلاستوسیانین که پتانسیل اکسایش- کاهش خیلی کمتری دارد، می‌رسند.

چون این پتانسیل به پتانسیل اکسایش- کاهش سیستم نوری I یا P700 بسیار نزدیک است از این رو الکترونها به آسانی جذب این سیستم می‌شوند. الکترونها ضمن عبور از زنجیره انتقال الکترون در نقطه‌ای بین پلاستوکینون و سیتوکروم که

سقوط یا افت پتانسیل در آنجا زیاد است انرژی خود را از دست می‌دهند این انرژی مصرف فسفریله کردن ADP و در نتیجه ایجاد ATP در حضور نور (فسفریلاسیون نوری) به مصرف می‌رسد این فسفریلاسیون با فسفریلاسیونی که در طی فرآیند تنفس صورت می‌گیرد تفاوت دارد. زیرا مستقل از اکسیژن مولکولی بوده و بدون نیاز به آن در

داخل کلروپلاستها رخ می‌دهد. برای آنکه مولکولهای یونی شده کلروفیل که الکترونهای خود را از دست داده‌اند بتوانند کمبود الکترونی را جبران کنند، اجبارا باید الکترون بگیرند.

برای این منظور مولکولهای یونی شده مثبت P680 این کمبود الکترونی را با جذب الکترونهایی که از اکسایش آب آزاد می‌شوند برطرف می‌سازند. از اکسایش آب علاوه بر الکترون ، یونهای هیدروژن و هیدروکسید نیز آزاد می‌شود. که یونهای هیدروکسیل به O2 و H2O تجزیه می‌شوند و بدین ترتیب اکسیژن فتوسنتزی متصاعد می‌گردد. یونهای پروتون نیز همراه با الکترونهایی که پس از فعالیت سیستم I به انتهای زنجیره متصل شده‌اند صرف احیا NADP و تشکیل NADPH می‌شوند.



چگونگی نقل و انتقال الکترون درسیستم نوری I
در این سیستم مرکز فعال مولکول P700 است که با دریافت الکترونهای منتقل شده از سیستم نوری II برانگیخته می‌شود و سپس الکترونها را از طریق زنجیره‌ای از مواد ناقل الکترونی خاص که پتانسیل اکسایش- کاهش خیلی پایینی دارند انتقال می‌دهد تا به NADP در انتهای زنجیره برسد. الکترونها ابتدا جذب ماده‌ای ناشناخته به نام x می‌شوند که پتانسیل اکسایش- کاهش ضعیفی دارد و سپس از طریق ناقلین بعدی زنجیره که به ترتیب عبارتند از: فردوکسین ، فلاوپروتئین و NADP منتقل می‌شوند انتهای این زنجیره NADP بوسیله الکترونهای انتقال یافته و به همراه یونهای پروتون حاصل از تجزیه آب احیا شده و به NADPH تبدیل می‌شود.
فسفریلاسیون نوری


در سال 1954 آرنون و همکارانش نشان دادند که کلروپلاستها آنزیمهای لازم جهت سنتز ATP را دربردارند بطوری که می‌توانند در حضور نور ATP بسازند. این ATP بوجود آمده به همراه یک ماده احیا کننده موجب احیا و تثبیت Co2 فتوسنتزی و بالاخره تولید کربوهیدرات در گیاه می‌شود. آرنون این فرایند ساخته شدن ATP در کلروپلاستها را فسفریلاسیون قتوسنتزی یا فسفریلاسیون نوری نامید.

 

 

چون در فتوسنتز علاوه بر ATP ، وجود ماده احیا کننده‌ای جهت تامین هیدروژن یا الکترونها نیز لازم است تا Co2 احیا شده و کربوهیدرات تشکیل شود از این رو فسفریلاسیون نوری یا واکنش تشکیل ATP فتوسنتزی اجبارا با یک واکنش آنزیمی جفت می‌شود که در کلروپلاستها انجام گرفته و موجب احیای نوکلئوتید پیریدینی NADP می‌گردد. در این واکنشهای جفت شده یا زوجی نوکلئوتید NADP در حضور نور و آب همراه با ADP و یک مولکول فسفات احیا شده NADPH تبدیل می‌شود و همزمان با آن ATP نیز شناخته و اکسیژن خارج می‌شود.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید