بخشی از مقاله
کارآفرینی تولید انواع رنگ
فصل اول – معرفی طرح
1-2-مشخصات محصول
1-1-2- نام و کاربرد محصول:
ایجاد و راه انداری یک فضای کارگاهی و کارخانه ای جهت تولید رنگ های شیمیایی
2-1-2-مشخصات فنی محصول
تولید رنگ صنعتی در مقیاس متوسط با استفاده از ترکیبات نوین و طیف های نوظهور
3-1-2-معرفی روشهای تولید
استفاده از روش صنعتی تولید رنگ
4-1-2-تشریح مختصر فرایند
تولید رنگ
فصل دوم
تعیین ظرفیت
فصل دوم – تعیین ظرفیت
2-2-تعیین ظرفیت تولید
ردیف نام محصول ظرفیت تولید سالانه (لیتر ) ظرفیت تولید ماهانه ( لیتر ) ظرفیت تولید روزانه ( لیتر )
1 رنگ های درجه 1 صنعتی 216000 18000 600
2 رنگ های درجه 2 صنعتی 180000 15000 500
3 رنگ های درجه 3 صنعتی 180000 15000 500
4 رنگ های جاده ای – درجه 1 216000 18000 600
5 رنگ های جاده ای – درجه 2 180000 15000 500
6 رنگ های ساختمانی - روغنی 252000 21000 700
7 رنگ های ساختمانی - معمولی 252000 21000 700
2-3-برآورد میزان مصرف مواد اولیه و قطعات خریدنی
ردیف نام ماده اولیه/ قطعات خریدنی مشخصات فنی مورد مصرف در محصول میزان مصرف
در محصول مصرف سالیانه منبع تامین
مقدار واحد داخلی خارجی
1 ترانسوفار تولید
- - - 6 *
2 سیستم گرم نگهدار Ra32i جهت ترکیب مواد شیمیایی و ترکیبی 3 *
3 سیستم تخلیه اتوماتیک Ta - Candi 3 *
4 سیستم برودتی و حرارتی Xi 5 - ZR 6 *
2-4-معرفی دستگاه ها و تجهیزات تولید
ردیف نام ماشین آلات/
تجهیزات تولید مشخصات فنی تعداد منبع تامین
داخلی خارجی
1 سیستم تخلیه و پاکسازی اتوماتیک Lexan Rs21s 2 *
2 سیستم نگهداری 2 زمانه 1 *
3 سیستم حرارت سنج 1 *
4 دیگ های ترکیبی تولید 24A Cio 3 *
5 مخلوط کن بزرگ حرارتی Tx - Zimax 5 *
2-5-معرفی تجهیزات و تاسیسات عمومی
ردیف عنوان تاسیسات به مقدار مصرف مقدار مصرف
محوطه کارگاه اداری بنزین گازوییل
1 برق * *
2 آب *
3 گاز * *
4 تلفن *
5 سوخت گرمایش * *
فصل سوم
معرفی نیروی انسانی
فصل سوم – معرفی نیروی انسانی
معرفی نیروی انسانی
1-3-برآورد پرسنل تولیدی
ردیف عناوین شغلی تعداد میزان تحصیلات جنسیت
1 سرپرست 1 کارشناسی ارشد مهندسی شیمی مرد
2 مهندس 4 کارشناس شیمی – مکانیک مرد
3 حسابدار 1 لیسانس حسابداری مرد / زن
4 کارگر 10 زیر دیپلم مرد
2-3-پرسنل اداری و خدمات
ردیف نوع مسئولیت تعداد شرح وظایف
1 مدير 5
2 خدمات 10
3 حسابدار 1
فصل چهارم
هزینه ها
فصل چهارم – هزینه ها
معرفی هزینه ها
ردیف عنوان هزینه مبلغ سالانه به ريال
1 مواد مصرفی 50000000
2 تامین انواع انرژی سوخت(تاسیسات-گرمایش-سرمایش) 1800000
3 هزینه خدمات نیروی انسانی 750000000
4 هزینه ماشین آلات و تجهیزات خط تولید 500000000
5 هزینه زمین-ساختمان 400000000
6 هزینه لوازم اثاثیه اداری 50000000
7 هزینه های قبل از بهره برداری 30000000
8 جمع کل هزینه ها 1798000000
برآورد هزینه استهلاک
شرح ارزش دارایی
( ریال) درصد هزینه استهلاک
محوطه سازی
ساختمان
ماشین آلات و وسایل آزمایشگاهی 50000000 10 5000000
تاسیسات
وسایل حمل و نقل
وسایل دفتری 5000000 10 500000
پیش بینی نشده
جمع کل 55000000 10 5500000
سود ناخالص= هزينه هاي ساليانه- در آمدسالیانه
7020000000 = 179800000 - 250000000
فصل پنجم
شرح فرایند و اطلاعات فنی مورد نیاز
فصل پنجم – شرح فرایند و اطلاعات فنی مورد نیاز
مقدمه :
براي آشنايي با تاريخچه و سابقه صنعت رنگ كشور به سالهاي 1300 باز مي گرديم كه هنوز رنگ در داخـل كشور توليد نمي شد و استادكاران نقاش، رنگ مورد نياز براي رنگ آميزي كاخها و ابنيه دولتي را با استفاده از مواد گياهي و معدني در پاي كار، به صورت دستي و با فرمولهاي سنتي توليد مي كردند.
در سال 1318، اولين واحد رنگسازي امروزي به نام رنگسازي ايران اقدام به توليد و عرضه رنگ روغــني كارخانهاي نمود و پس از آن شركتهاي رنگ سرو و رنگ شمس فعاليت رنگسازي خود را آغاز نمودند. در آن سالها هنوز رنگ روغني كارخانهاي با استفاده از روغن هاي گياهي و پودرهاي معدني توليد مي شـد و اين امر تا سال 1341 كه اولين محصول رنگ روغني با استفاده از رزين الكيد توسط شركت پلاسكار به بازار عرضه گرديد، ادامه داشت.
رنگ پلاستيك بر پايه پلي وينيل استات براي مصارف ساختماني نيز براي اولين بار در سال 1338 توســـط شركت پلاسكار توليد و عرضه شد و پس از آن شركتهاي هاويلوكس ،رنگين، ديروپ، سوپر رنگ از سال 1341 تا 1347 به تدريج، رنگ پلاستيك خود را به بازار عرضه نمودند.
در واقع مي توان گفت كه در سال 1344 صنعت رنگسازي در ايران شكل تازه اي يافت و واحدهاي مـتعددي فعاليت خود را آغاز نمودند. شركتهاي تاباشيمي، ديروپ ايران، رنگين، سوپررنگ و پارس پامچال از جمله شركتهايي هستند كه در اين سال پا به عرضه صنعت رنگ كشور گذاشته و محصولات جديدي مانند لاكهاي روي چوب، رنگهاي هوا خشك و كورهاي صنعتي و رنگهاي تعميري خودرو را به بازار عرضه نمودند.
از اواخر دهه 50 تعداد واحدهاي توليدكننده رنگ افزايش يافت و امروز صنعت رنگ كشور با بيـش از 350 واحد صنعتي مجاز با مجموع ظرفيت 900 هزارتن در سال توليد انواع رنگهاي ساختماني و صنعتي و همچنين صدها واحد غير مجاز مشغول به فعاليت مي باشد.
صنعت توليد رزينهاي مورد مصرف در رنگسازي نيز در كشور سابقه اي طولاني دارد. براي بررسي تاريخچه اين صنعت به سال 1344 باز ميگرديم كه براي اولين بار رزين الكيد بوسيله رنگسازي ايران و رزيـن پليوينيلاستات نيز توسط پلاسكار توليد گرديد و پس از آن شركتهاي پارس سادولين،
ديروپ ايران اقدام به توليد رزين الكيد و هو خست ايران به توليد رزين پليوينيلاستات همت گماردند. و امروز صنعت رزين كشور با بيش از 120 واحد صنعتي و مجموع ظرفيت 750 هزارتن در سال قادر است انواع رزينهاي پليوينيلاستات و كوپليمرهاي آن، انواع رزينهاي الكيد و اصلاح شده آن، آمينو رزينها، انواع پلياستر غيراشباع، رزينهاي اكريليك و رزين فنوليك را توليد نمايد.
رنگ ها:
تنوع رنگ ها بسيار زياد است:
1- رنگ روغني معمولي كه با تينر يا بنزين رقيق مي شود براي كارهاي ساده و معمولي استفاده مي شود. استفاده از ريتاردر در رنگ روغني باعث چسبندگي بيشتر كار مي شود اما خشك شدن اين رنگ طولاني و يا نياز به خشك كن دارد.
2- رنگ پلي اتيلن كه با تينر و ترجيحا با ريتاردر رقيق مي شود. كيفيت متوسطي دارد ، سريع تر خشك مي شود و چسبندگي متوسطي دارد كه از رنگ روغني بهتر است.
3- رنگ P.V.C كه با ريتاردر رقيق مي شود و كيفيت خوبي دارد و خيلي زود خشك مي شود. رنگ پلي اتيلن و PVC داراي بيس رنگي هستند كه با جوهر هاي رنگي مختلف رنگ مي پذيرد و تنوع آن زياد است.
4- رنگ پيگمنت: براي چاپ پارچه استفاده مي شود و داراي بيس و خمير رنگ بوده و كيفيت مناسبي براي چاپ پارچه دارد.
5- رنگ اورونيت: براي چاپ پارچه استفاده مي شود و داراي بيس و خمير رنگ بوده و كيفيتي خاص و برجسته روي پارچه ها مي گذارد.
6- رنگ آب شور براي چاپ كارتن و مقوا استفاده مي شود.
7- رنگ پلاستيك قابل شستو شو براي پارچه استفاده مي شود و ارزان تر از ساير رنگ ها است.
8- رنگ پخت بالا: براي رنگ روي كاغذ گل چيني و گل ملامين كاربرد دارد و قيمت بالايي داشته و برگهايي مخصوص به خود دارد.
9- رنگ ترانسفر يا برگردان كه روي كاغذ معمولي چاپ مي شود و با حرارت و پرس داغ روي لباس عمل چاپ انجام مي شود.
10- پودر در رنگ هاي مختلف كه با خمير مخصوصي مخلوط شده و با آب حل مي شود و بر
اي چاپ اسكرچ استفاده مي شود.
البته از انواع مركب نيز مي توان بهره برد.
حلال ها شامل آب براي رنگ هاي پلاستيك و براي ساير رنگ ها از ريتاردر – تينر – بنزين – نفت و حلال ويژه 410 شركت نفت استفاده مي شود.
رنگها را معمولا براساس خواص آنها و ساختمان ماده اصلی (ساختمان شیمیایی مواد) طبقه بندی میکنند. روش دیگر طبقه بندی رنگها براساس روش مصرف آنها در رنگرزی میباشد. روش و تکنیک رنگرزی به ساختمان ، طبیعت الیاف یا شئ مورد رنگرزی بستگی دارد. به عبارت دیگر رنگرزی پشم و ابریشم و دیگر الیاف به دست آمده از حیوانات با رنگرزی پنبه و الیاف به دست آمده از گیاهان تفاوت دارد.
نقش ساختمان شیمیایی الیاف در تعیین رنگ مورد نیاز
در رنگرزی همیشه ساختمان شیمیایی الیاف تعیین کننده نوع رنگ مورد نیاز و تکنیک رنگرزی میباشد. به عنوان مثال الیاف حیوان مانند پشم و ابریشم از پروتئین تشکیل شدهاند و دارای گروههای اسیدی و بازی میباشند. این گروهها نقاطی هستند که در آنها مولکول رنگ خود را به الیاف متصل میکند. پس برای رنگرزی این گونه الیاف باید از رنگهایی که دارای بنیان اسیدی و بازی هستند استفاده کرد.
پنبه یک کربوهیدرات میباشد و تنها محتوی پیوندهای خنثای اتری و گروههای هیدروکسیل است. در این نقاط پیوندهای هیدروژنی بین الیاف و رنگ ایجاد میشود. پس باید از رنگهای متناسب با خصوصیات الیاف پنبهای استفاده کرد. متصل کردن رنگ به الیاف مصنوعی و سنتزی مانند پلی اولفینها و هیدروکربنها که کاملا عاری از گروههای قطبی هستند، تکنیک و روش دیگری را میطلبد. بر اساس روش رنگرزی به صورت زیر دستهبندی میشود.
رنگهای مستقیم یا رنگهای جوهری
این دسته از رنگها دارای گروهها و عوامل قطبی مانند عوامل اسیدی و بازی هستند و با استفاده از این گروهها ، رنگ با الیاف ترکیب میشود. برای رنگرزی پارچه با اینگونه رنگها فقط کافی است که پارچه را در محلول آبی و داغ رنگ فرو ببریم. اسید پیکریک و ماریتوس زرد از جمله این رنگها هستند. هر دو رنگ ، اسیدی بوده و با گروههای آمینه الیاف پروتئینی ترکیب میشوند. نایلون نیز که یک پلیآمید است، با این رنگها قابل رنگرزی است.
رنگ دانهای
این دسته از رنگها شامل ترکیباتی هستند که میتوانند با برخی از اکسیدهای فلزی ترکیب شده و نمکهای نامحلول و رنگی که لاک نامیده میشوند، تشکیل دهند. روش رنگرزی با این رنگها از کهنترین روشهای تثبیت رنگ روی الیاف بوده است. این رنگها بیشتر برای رنگرزی ابریشم و پنبه بکار میرود. در رنگرزی با رنگهای دانهای پارچه یا الیاف ، رنگی به نظر میرسند. چون الیاف توسط لایهای از رسوب رنگین پوشانده میشود. برای ایجاد دندانه روی رنگها معمولا از اکسیدهای آلومینیوم ، کروم و آهن استفاده میشود. آلیزارین نمونهای از این رنگها میباشد.
رنگ خمیری
رنگ خمیری مادهای است که در شکل کاهش یافته ، محلول در آب بوده و ممکن است بیرنگ هم باشد. در این حالت الیاف به این رنگ آغشته شده و پس از جذب رنگ توسط الیاف ، آنها را از خمره خارج کرده و در معرض هوا با یک ماده شیمیایی اکسید کننده قرار میدهند. در این مرحله رنگ اکسید شده و به صورت رنگین و نامحلول در میآید. رنگهای باستانی ایندیگو و تیریان از این جملهاند.
رنگ واکنشی
این رنگها که تحت عنوان رنگهای ظاهر شونده هم شناخته میشوند، در درون خود پارچه ، تشکیل شده و ظاهر میگردند. مثال مهمی از این گروه رنگها ، رنگهای آزو میباشند. رنگرزی با این رنگها به این صورت است که پارچه را در محلول قلیایی ترکیبی که باید رنگ در آن مشتق شود (فنل یا نفتول) فرو میبریم. سپس پارچه را در محلول سرد آمین دی ازت دار شده در داخل خود الیاف انجام شده و رنگ تشکیل میگردد. به رنگی که به این صورت حاصل میشود رنگ یخی نیز میگویند، زیرا برای پایداری و جلوگیری از تجزیه نمک دی آزونیوم دمای پائین ضرورت دارد.
رنگ پخش شونده
این دسته از رنگها در خود الیاف محلول هستند، اما در آب نامحلول میباشند. رنگهای پخش شونده در رنگرزی بسیاری از الیاف سنتزی بکار میروند. به این الیاف گاهی اوقات الیاف آبگریز نیز گفته میشود. معمولا ساختمان شیمیایی آنها فاقد گروههای قطبی است. روش رنگرزی به اینگونه است که رنگ به صورت پودر نرم در بعضی از ترکیبات آلی مناسب (معمولا ترکیبات فنل) حل میشود و در دما و فشار بالا در حمامهای ویژه به الیاف منتقل میشود.
کامپوزیت چیست ؟
مواد کامپوزیتی مواد مهندسی ای هستند که از دو یا چند جزء تشکیل شده اند به گونه ای که این مواد مجزا و در مقیاس ماکروسکوپی قابل تشخیص هستند. کامپوزیت از دو قسمت اصلی ماتریکس و تقویت کننده تشکیل شده است. ماتریکس با احاطه کردن تقویت کننده آن را در محل نسبی خودش نگه می دارد. تقویت کننده موجب بهبود خواص مکانیکی ساختار میگردد. به طور کلی تقویت کننده میتواند به صورت فیبرهای کوتاه و یا بلند و پیوسته باشد
تعریف ASM: به ترکیب ماکروسکوپی دو یا چند مادهٔ مجزا که سطح مشترک مشخصی بین آنها وجود داشته باشد، کامپوزیت گفته میشود. [1]
دستهبندی کامپوزیتها از لحاظ فاز زمینه
CMC (کامپوزیتهای با زمینهٔ سرامیکی)
PMC (کامپوزیتهای با زمینهٔ پلیمری)
MMC (کامپوزیتهای با زمینهٔ فلزی)
دستهبندی کامپوزیتها از لحاظ نوع تقویت کننده
FRC (کامپوزیتهای تقویت شده با فیبر)
PRC (کامپوزیتهای تقویت شده توسط ذرات)
کامپوزیتهای سبز(کامپوزیتهای تجزیهپذیر زیستی)
در اینگونه کامپوزیتها، فاز زمینه و تقویت کننده، از موادی که در طبیعت تجزیه میشوند،ساخته میشوند. در کامپوزیتهای سبز، معمولاً فاز زمینه از پلیمرهای سنتزی قابل جذب بیولوژیکی و تقویت کنندهها از فیبرهای گیاهی ساخته میشوند. [2]
مزایای مواد کامپوزیتی
مهمترین مزیت مواد کامپوزیتی آن است که با توجه به نیازها، میتوان مواد جدیدی با خواص مطلوب تولید کرد. به طور کلی مواد کامپوزیتی دارای مزایای زیر هستند:
• مقاومت مکانیکی نسبت به وزن بالا
• مقاومت در برابر خوردگی بالا
• خصوصیات خستگی عالی نسبت به فلزات
• خواص عایق حرارتی خوب
کاربردها
الیاف شیشه (فایبرگلاس) یکی از پرکاربردترین کامپوزیتهاست. الیاف شیشه (فایبرگلاس) یک کامپوزیت با زمینه پلیمری است که توسط الیافهای شیشه تقویت شده است. الیاف شیشه متداولترین الیاف مصرفی کامپوزیتها در ایران و جهان است . انواع الیاف شیشه عبارتند از انواع E ، C ، S و کوارتز. ترکیب الیاف شیشه نوع E یا الکتریکی ، از جنس آلومینیوم و بور و سیلیکات کلسیم بوده و دارای مقاومت ویژه الکتریکی بالایی است. الیاف شیشه نوع S ، تقریباْْ 40 درصد پایداری بیشتری نسبت به الیاف شیشه نوع E دارند. الیاف شیشه نوع C یا الیاف شیشه شیمیایی ، دارای ترکیب بور و سیلیکات کربنات دو سود بوده و نسبت به دو مورد پیشین پایداری شیمیایی بیشتری به ویژه در محیطهای اسیدی دارد.الیاف شیشه کوارتز ، بیشتر در مواردی که ویژگی دیالکتریک پایین نیاز باشد، مانند پوشش آنتنها و یا رادارهای هواپیما استفاده میشوند.
بسپار یا پلیمر :
بسپار یا پلیمر مادهای شامل مولکولهای بزرگی است که از واحدهای کوچک تکرار شونده که تکپار یا مونومر نامیده می شود، ساخته شده است.
نام
واژه «پلیمر» از کلمات یونانی «پلی» به معنای بسیار و «مر» به معنی قسمت، پاره یا قطعه گرفته شده است. در زبان فارسی به آن «بسپار» اطلاق میکنند.
انواع بسپار
تعداد واحدهای تکرارشونده در یک مولکول بزرگ درجه بسپارش یادرجه پلیمریزاسیون نامیده می شود.بسپارهایی که فقط از یک نوع واحد تکرار شونده تشکیل شدهاند، جوربسپار (Homopolymer) و آنهایی که از دو واحد تکرارشونده تشکیل شدهاند، همبسپار (copolymer) نامیده میشوند. گاهی لفظ ترپلیمر (Terpolymer) نیز برای محصولات حاصل از پلیمریزاسیون سه مونومر به کار میرود. در عین حال، در مورد محصولاتی که با بیش از سه مونومر پلیمریزه شده اند، لفظ ناجوربسپار (Heteropolymer) رایج است. بیشتر مواد اساسی همچون پروتئین، چوب، کتین، لاستیک خام (کائوچو) و رزینها که در موجودات زنده یافت می شود پلیمر هستند. بسیاری از مواد مصنوعی همچون پلاستیکها، الیاف مصنوعی (نایلون، ریون و. . . )، چسبها، شیشه و چینی مواد پلیمری هستند.
دسته بندی پلیمرها
پلیمرها به دو دسته پلیمرهای طبیعی و پلیمرهای مصنوعی تقسیم میشوند. البته پلیمرها را به روشهای مختلف دیگری نیز دسته بندی نیز می کنند. دسته بندی زیر بر اساس ساختار پلیمر انجام شده است.
پليمرها از نظر اثر پذ يری در برابر حرارت به دو دسته ترموپلاستيک ها (گرما نرم ها ) و ترموستها (گرماسخت ها ) تقسيم مي شوند . ترموپلاستيک ها , پليمرهايی هستند که هنگام حرارت دهی ذوب می شوند و هنگام سرد کردن جامد می شوند در حالی که ترموستها , پليمرهايی هستند که هنگام حرارت دهی ذوب نمی شوند بلکه در دماهای بسيار بالا به صورت برگشت ناپذيری تجزيه می شوند .
رزین :
پدیده تبادل یون برای اولین بار در سال 1850 و به دنبال مشاهده توانایی خاکهای زراعی در تعویض برخی از یونها مثل آمونیوم با یون کلسیم و منیزم موجود در ساختمان آنها گزارش شد. در سال 1870 با انجام آزمایشهای متعددی ثابت شد که بعضی از کانیهای طبیعی بخصوص زئولیتها واجد توانایی انجام تبادل یون هستند. در واقع به رزینهای معدنی ، زئولیت میگویند و این مواد یونهای سختی آور آب (کلسیم و منیزیم) را حذف میکردند و به جای آن یون سدیم آزاد میکردند از اینرو به زئولیتهای سدیمی مشهور شدند که استفاده از آن در تصفیه آب مزایای زیاد داشت چون احتیاج به مواد شیمیایی نبود و اثرات جانبی هم نداشتند.
اما زئولیتهای سدیمی دارای محدودیتهایی بودند. این زئولیتها میتوانستند فقط سدیم را جایگزین کلسیم و منیزیم محلول در آب نمایند و آنیونهایی از قبیل سولفات ، کلراید و سیلیکاتها بدون تغییر باقی میمانند. واضح است چنین آبی برای صنایع مطلوب نیست. پس از انجام تحقیقات در اواسط دهه 1930 در هلند زئولیتهایی ساخته شد که به جای سدیم فعال ، هیدروژن فعال داشتند. این زئولیتها که به تعویض کنندههای کاتیونی هیدروژنی معروف جدید ، سیلیس نداشته و علاوه بر این قادرند همزامان هم سختی آب را حذف کنند و هم قلیائیست آب را کاهش دهند.
برای بهبود تکنولوژی تصفیه آب ، گامهای اساسی در سال 1944 برداشته شد که باعث تولید زرینهای تعویض آنیونی شد. زرینهای کاتیونی هیدروژنی تمام کاتیونی آب را حذف میکنند و رزینهای آنیونی تمام آنیونهای آب را از جمله سیلیس را حذف مینمایند ، در نتیجه میتوان با استفاده از هر دو نوع زرین ، آب بدون یون تولید کرد. همچنین پژوهشگران دریافتند که سیلیکات آلومینیم موجود در خاک قادر به تعویض یونی میباشد. این نتیجه گیری با تهیه ژل سیلیکات آلومینیم از ترکیب محلول سولفات آلومینیم و سیلیکات سدیم به اثبات رسید. بنابراین اولین رزین مصنوعی که ساخته شد سیلیکات آلومینیم بود. و امروزه اکثر زرینهای تعویض یونی که در تصفیه آب بکار میروند رزینهای سنتزی هستند که با پلیمریزاسیون ترکیبات آلی حاصل شدهاند.
شیمی رزینها
رزینهای موازنه کننده یون ، ذرات جامدی هستند که میتوانند یونهای نامطلوب در محلول را با همان مقدار اکی والان از یون مطلوب با بار الکتریکی مشابه جایگزین کنند. رزینهای تعویض یونی شامل بار مثبت کاتیونی و بار منفی آنیونی میباشد بگونهای که از نظر الکتریکی خنثی هستند. موازنه کنندهها با محلولهای الکترولیت این تفاوت را دارند که فقط یکی از دو یون ، متحرک و قابل تعویض است به عنوان مثال ، یک تعویض کننده کاتیونی سولفونیک دارای نقاط آنیونی غیر متحرکی است که شامل رادیکالهای آنیونی SO2-3 میباشد که کاتیون متحرکی مثل +H یا +Na به آن هستند.
این کاتیونهای متحرک میتوانند در یک واکنش تعویض یونی شرکت کنند به همین صورت یک تعویض کننده آنیونی دارای نقاط کاتیونی غیر متحرکی است که آنیونهای متحرکی مثل -Cl یا -OH به آن متصل میباشد. در اثر تعویض یون ، کاتیونها یا آنیونهای موجود در محلول با کاتیونها و آنیونهای موجود در رزین تعویض میشود ، بگونهای که هم محلول و هم رزین از نظر الکتریکی خنثی باقی میماند. در اینجا با تعادل جامد مایع سروکار داریم بدون آنکه جامد در محلول حل شود. برای آنکه یک تعویض کننده یونی جامد مفید باشد باید دارای شرایط زیر باشد:
1. خود دارای یون باشد.
2. در آب غیر محلول باشد.
3. فضای کافی در شبکه تعویض یونی داشته باشد ، بطوریکه یونها بتوانند به سهولت در شبکه جامد رزین وارد و یا از آن خارج شوند.
در مورد رزینهای کاتیونی هر دانه رزین با آنیون غیر تحرک و یون متحرک +H را میتوان همچون یک قطره اسید سولفوریک با غلظت 25% فرض نمود. این قطره در غشایی قرار دارد که فقط کاتیون میتواند از ان عبور نماید. شکل زیر تصویر یک دانه رزین و تصویر معادل یک قطره اسید سولفوریک 25% نشان میدهد.