بخشی از مقاله

كاربرد هاي ليزر
مقدمه
امروزه ليزر كاربردهاي بيشماري دارد كه همه زمينه هاي مختلف علمي و فني فيزيك-شيمي-زيست شناسي - الكترونيك و پزشكي را شامل مي شود. همه اين كاربردها نتيجه مستقيم همان ويژگي هاي خاص نور ليزر است.

ليزر مخفف عبارت light amplification by stimulated emission of radiation می باشد و به معنای تقويت نور توسط تشعشع تحريک شده است.اولين ليزر جهان توسط تئودور مايمن اختراع گرديد و از ياقوت در ان استفاده شده بود. در سال 1962 پروفسورعلی جوان اولين ليزر گازی را به جهانيان معرفی نمود و بعدها نوع سوم وچهارم ليزرها که ليزرهای مايع و نيمه رسانا بودند اختراع شدند.

در سال 1967 فرانسويان توسط اشعه ليزر ايستگاههای زمينی شان دو ماهواره خود را در فضا تعقيب کردند, بدين ترتيب ليزر بسيار کار بردی به نظر آمد.نوری که توسط ليزر گسيل می گردد در يک سو و بسيار پر انرژی و درخشنده است که قدرت نفوذ بالايی نيز دارد بطوريکه در الماس فرو ميرود . امروزه استفاده از ليزر در صنعت بعنوان جوش اورنده فلزات و بعنوان چاقوی جراحی بدون درد در پزشکی بسيار متداول است.


ليزرها سه قسمت اصلی دارند:
۱-پمپ انرژی يا چشمه انرژی: که ممکن است اين پمپ اپتيکی يا شيميايی و ياحتی يک ليزر ديگر باشد
۲- ماده پايه وزفعال که نام گذاری ليزر بواسطه ماده فعال صورت ميگيرد
۳- مشدد کننده اپتيکی : شامل دو اينه بازتابنده کلی و جزئی می باشد


طرز کار يک ليزر ياقوتی:
پمپ انرژی در اين ليزر از نوع اپتيکی ميباشد ويک لامپ مارپيچی تخليه است(flash tube) که بدور کريستال ياقوت مدادی شکلی پيچيده شده(ruby) کريستال ياقوت ناخالص است و ماده فعال ان اکسيد برم و ماده پايه ان اکسيد الومينم است.
بعد از فعال شدن اين پمپ انرژی کريستال يا قوت نور باران می شودو بعضی از اتمها رادر اثرجذب القايی-stimulated absorption برانگيخته کرده وبه ترازهای بالاتر می برد.

 


پديده جذب القايی: اتم برانگيخته = اتم+فوتون
با ادامه تشعشع پمپ تعداد اتمهای برانگيخته بيشتر از اتمهای با انرژی کم ميشود به اصطلاح وارونی جمعيت رخ می دهد طبق قانون جذب و صدور انرژی پلانک اتمهای برانگيخته توان نگهداری انرژی زيادتر را نداشته وبه تراز با انرژی کم بر ميگردند وانرژی اضافی را به صورت فوتون ازاد می کنند که به اين فرايند گسيل خودبخودی گفته می شود ولی از انجايی که پمپ اپتيکی
مرتب به اتمها فوتون می تاباند پديده ديگري زودتر اتفاق می افتد که به ان گسيل القايی-stimulated emission گفته می شود .وقتی يک فوتون به اتم برانگيخته بتابد ان را تحريک کرده و زودتر به حالت پايه خود بر می گرداند.


گسيل القايی: اتم+دو فوتون = اتم برانگيخته+ فوتون
اين فوتونها دوباره بعضی از اتمها را بر انگيخته ميکنند و واکنش زنجير وار تکرار می شود.
بخشی از نور ها درون کريستال به حرکت در می ايند که توسط مشددهای اپتيکی درون کريستال برگرداننده می شوند واين نورها در همان راستای نور اوليه هستد بتدرج با افزايش شدت نور لحظه ای می رسد که نور ليزر از جفتگر خروجی با روشنايی زياد بطور مستقيم خارج می شود .

ليزر CO2
ليزرهاي گازي نوع خاصي از ليزر است كه در آن گازي داخل يك لوله ي شفاف مثل لامپ مهتابي مي رود. عبور جريان از اين لوله باعث رفت و آمد ِ فوتون مي شود. اولين نوع ِ اين ليزرها هليم نئون بود. يعني همين ليزرهاي خانگي و مدارس. اين ليزر ِ ايمن توسط يك ايراني در مؤسسه ي بل به نام دكتر علي جوان اختراع شد. نوع ديگر ليزر ليزر CO2 است. البته در محفظه ي آن هليوم و

مقداري نيتروژن هم هست. كاز نيتروژن انرژي ِ الكترودها را ذخيره مي كند. پس از برخورد مولكولهاي نيتروژن به مولكول CO2 اين انرژي انتقال مي يابد. مولكولهاي CO2 برانگيخته مي شوند. گاز هليوم به انتقال ِ انرژي كمك مي كند. همچنين كمك مي كند تا مولكولهاي دي اكسيد كربن زودتر به ترازهاي انرژي عادي يا حالت عادي خود برگردند. اين ليزرها بازده خوبي دارند.


نمايي از ليزر گازي دکتر علي جوان (مجله "Smithsonian" آوريل 1971)
تاثير ليزرکم توان بر روي سلولهاي عصبي
در مطالعه اي که با استفاده از اشعه ليزر هليوم- نئون 632.8 نانومتر براي تعيين اثر نور ليزر برروي سلولهاي مغز جنين موش و سلولهاي مغز موش بالغ انجام شد مشخص گرديد که نور مستقيم ليزر هليوم- نئون به ميزان 3.6 ژول بر سانتي متر مربع سبب تسريع در پروسه هاي سلولي رشد و نمو گرد يد که در نمونه کنترل نور ليزر نديده فقط مقدار کمي رشد ديده ميشد. اين مشاهده پيشنهاد

ميکند که اشعه ليزر کم توان را ميتوان در موضعي که بطور آزمايشي باعث آسيب عصب محيطي در آن شده ايم بکار برده و باعث تسريع پروسه هاي رشد در آن شويم و در نتيجه آن باعث تسريع در ترميم جراحت عصب شويم.مکانيزم ليزر کم توان در بافت عصبي بطور کامل فهميده نشده است ولي بعضي آزمايشات بطور ضمني اثرات فتوشيميايي نور ليزر را در سيستمهاي بيولوژيک توضيح

ميدهد. سيتوکرومها تاثير پذيرفته وباعث تحريک فعاليت Redox در زنجيره تنفس سلولي ميگردد ودر نتيجه سبب افزايش در توليدادنوزين تري فسفات شده که بنوبه خود باعث فعاليت Na,k-ATPase و ديگر حامل هاي يوني ميشود که در نها يت باعث افزا يش فعاليت سلولي ميگردد.
مطالعه بر روي حيوا ن- تاثير ليزر درماني بر آسيب شديد اعصاب محيطي


روش اشعه دادن براي درمان آسيبهاي سيستم اعصاب محيطي و مرکزي در سال1978 توسط روکيند ابداع وسپس طي سالهاي بعدي تغييراتي نمود. مدل مورد استفاده در اين کار عصب سيا تيک موش بود. سپس تشعشع ليزر کم توان جهت جراحت شديد اعصاب محيطي چه بطور مستقيم و چه بصورت روي پوستي بکار رفت. اثر اين دو نوع ليزر درماني در کوتاه مدت اندازه گيري شد يعني هم پس از چند دقيقه و هم پس از طولاني مدت(روز ها و ماهها) .


در نمونه كوتاه مدت : از طريق زخم باز به عصب جراحت ديده تشعشع مستقيم صورت گرفت و پتانسيل عمل اندازه گيري شد. طول موجها و قدرتهاي مختلفي بكار برده شد و مشخص گرديد كه طول موجهاي 540 ، 632.8 و780 نانومتر بيشترين اثر را دارند . (P=0.01)
در نمونه طولاني مدت : مشخص شد همانطور كه انتظار مي رفت فعاليت الكتروفيزيولوژيك در نمونه آسيب ديده اي كه اشعه نديده بود كاهش داشت . اما استفاده از ليزر كم توان از كاهش فعاليت الكتروفيزيولوژيك جلو گيري كرد ويا پيشرفت آن را كند نمود. (P=0.001) اين خاصيت هم بلافاصله

بعد ازآسيب و هم در طولاني مدت بروز كرد. اين تحقيق نشان داد كه وقتي درمان با ليزر كم توان براي هر دو قسمت عصب محيطي آسيب ديده و بخش نخاعي آن انجام شود در مقايسه با كاربرد ليزردر محل ضايعه به تنهايي مدت زمان بهبودي و كيفيت ترميم عصب سياتيك اسيب ديده بهتر ميشود .مطالعات بافت شناسي نيز يافته هاي الكتروفيزيولوژيك را تاييد مي كنند بدين صورت كه ليزر كم توان باعث كاهش ويا جلوگيري از پيدايش بافت اسكار در محلهاي آسيب ديده مي شود.

تشعشع ليزر باعث افزايش جوانه زدن(Sprouting) اكسونها در عصب آسيب ديده سياتيك شده و باعث تسريع در بهبودي اعصاب محيطي آسيب ديده مي شود . بعلاوه اثر سودمند تشعشع ليزر كم توان نه تنها در عصب درمان شده با ليزر ديده ميشود بلكه در سگمنت مطابق آن در نخاع نيز بروز ميكند . درمان با ليزر كم توان بطور چشمگيري باعث كاهش تغييرات دژنراتيو در محل عصب

درنخاع شده و افزايش تكثير نوروگليا هم از نوع استروسيتها و هم از نوع اليگودندروسيتها را بدنبال دارد. اين مطلب نشاندهنده اين است كه متابوليسم نرونها بالاتر رفته و توانايي توليد ميلين بواسطه درمان ليزري بهتر ميشود . همچنين تشعشع ليزر كم توان باعث ايجاد اثرات سيستميك در اعصاب محيطي بشدت آسيب ديده و مطابق آن در نخاع ميشود .
مطالعه تصادفي دو سويه كور ميزان ترميم عصب سياتيك موش بعد از بخيه كردن و ليزر درماني بعد از عمل بتازگي اثر درماني تشعشع ليزر كم توان برروي ترميم اعصاب محيطي پس از قطع كامل و آناستوموز مستقيم ان در عصب سياتيك موش بررسي شده است . ليزر با طول موج 780 نانومتر

ترانس كوتانئوس روزي 30 دقيقه براي 21 روز پي درپي برروي محل اسيب عصب سياتيك و مطابق آن در نخاع بلافاصله بعد از بستن زخم تابانده شد . پاسخ مثبت سوماتوسنسوري در 55% موشهاي اشعه ديده ودر 11% موشها اشعه نديده مشاهده شد . رنگ آميزي ايمنوهيستوكميكال در گروه درمان شده با ليزررشد بيشتر آكسون و كيفيت بهتر پروسه ترميم بدليل افزايش تعداد اكسونهاي با قطر متوسط و قطر زياد را نشان داد .


مطالعه باليني پيلوت در گروه بيماران بستري شده در بخش جراحي مغز و اعصاب مركز پزشكي سوراسكي و در افرادي كه از جراحت شديد اعصاب محيطي و براكيال پلكسوس براي مدت بيش از دو سال رنج مي بردند .- هركدام از 59 بيمار با ليزر CW 780 nm براي 5ساعت درروز بمدت 21 روز پياپي با استفاده از سيستم ليزري بخصوصي كه مخصوص روش خودمان طراحي شده بود، درمان شدند . ملاك درمان با ليزر دراين افراد بقرار زير بود:


بيماراني كه از اختلالات جزيي حركتي و حسي در رنج بودند و جراحي مثمر ثمر نبود . 56% بيماران درمان شده با ليزر نتايج خوب و عالي در اعمال موتور نشان دادند .
مطالعه اتفاقي دوسويه كور گروه كنترل و پلاسبو درخصوص تاثير ليزر كم توان در درمان جراحت اعصاب محيطي : اين مطالعه در افرادي كه آسيب ناقص اعصاب محيطي در شبكه براكيال از 6 ماه تا چند سال قبل داشته اند انجام شد . پروتكل اين درمان با مجوز كميته هلسينكي دانشگاه سوراسكي و وزارت بهداشت و باهمكاري بخش توانبخشي انجام شد . اين مطالعه بهبودي

فانكشنال اين بيماران را پس از درمان باليزر كم توان و يا پلاسبو مورد بررسي قرارداد . بهبودي اين بيماران با مقايسه اشكال موجود قبل و بعد از جراحي طبقه بندي شد . درجه بندي پس از ليزر درماني ياپس از پلاسبو با مقايسه تغيير در قدرت پس از درمان و قبل از درمان انجام شد . تقريبا در همه موارد سطح عمل موتور قبل از درمان حداقل تا خيلي ضعيف بود. از نظر آماري در گروه درمان شده با ليزر درمقايسه با گروه پلاسبو بهبودي قابل ملاحظه اي در فعاليت موتوري ديده شد

(P=0.0001) . يافته هاي الكتروفيزيولوژيك از لحاظ اماري نشاندهنده بهبودي قابل ملاحظه در گروه درمان شده باليزر بود . تجربيات 25 ساله ما نشان داد كه ليزردرماني روشي ارزان و غيرتهاجمي بوده و به عنوان درمان اضافي و استاندارد براي بهبودي كاركرد در بيماران داراري آسيبهاي اعصاب محيطي و شبكه براكيال محسوب ميشود . بر اساس تجربيات باليني ما مزيت اصلي ليزردرماني تقويت و شتاب گرفتن بهبودي در بافت عصبي آسيب ديده ميباشد . نتايج درماني نشان ميدهد كه بهبودي پيشرونده در كاركرد عصب باعث بهبودي قابل توجه ميگردد.


كاربرد ليزر در فيزيك و شيمي
اختراع ليزر و تكامل آن وابسته به معلومات پايه اي است كه در درجه اول از رشته فيزيك و بعد از شيمي گرفته شده اند. بنابراين طبيعي است كه استفاده از ليزر در فيزيك و شيمي از اولين كاربردهاي ليزر باشند
رشته ديگري كه در آن ليزر نه تنها امكانات موجود را افزايش داده بلكه مفاهيم كاملا جديدي را عرضه كرده است طيف نمايي است. اكنون با بعضي از ليزرها مي توان پهناي خط نوساني را تا چند ده كيلوهرتز باريك كرد ( هم در ناحيه مرئي و هم در ناحيه فروسرخ ) و با اين كار اندازه گيري هاي

مربوط به طيف نمايي با توان تفكيك چند مرتبه بزرگي ( 3 تا 6) بالاتر از روش هاي معمولي طيف نمايي امكان پذير مي شوند. ليزر همچنين باعث ابداع رشته جديد طيف نمايي غير خطي شد كه در آن تفكيك طيف نمايي خيلي بالاتر از حدي است كه معمولا با اثرهاي پهن شدگي دوپلر اعمال مي شود. اين عمل منجر به بررسيهاي دقيقتري از خصوصيات ماده شده است.


در زمينه شيمي از ليزر هم براي تشخيص و هم براي ايجاد تغييرات شيميايي برگشت ناپذير استفاده شده است. ( فوتو شيمي ليزري) به ويژه در فون تشخيص بايد از روش هاي (پراكندگي تشديدي رامان ) و ( پراكندگي پاد استوكس همدوس رامان ) (CARS) نام ببريم. به وسيله اين روشها مي توان اطلاعات قابل ملاحظه اي درباره خصوصيات مولكولهاي چند اتمي به دست آورد (

يعني فركانس ارتعاشي فعال رامن - ثابتهاي چرخشي و ناهماهنگ بودن فركانس). روش CARS همچنين براي اندازه گيري غلظت و دماي يك نمونه مولكولي در يك ناحيه محدود از فضا به كار مي رود. از اين توانايي براي بررسي جزئيات فرايند احتراق شعله و پلاسما ( تخليه الكتريكي) بهره برداري شده است.


شايد جالبتري كاربرد شيميايي ( دست كم بالقوه ) ليزر در زيمنه فوتو شيمي باشد. اما بايد در نظر داشته باشيم به خاطر بهاي زياد فوتونهاي ليزري بهره برداري تجاري از فوتوشيمي ليزري تنها هنگامي موجه است كه ارزش محصول نهايي خيلي زياد باشد. يكي از اين موارد جداسازي ايزوتوپها است.


كاربرد در زيست شناسي
از ليزر به طور روزافزوني در زيست شناسي و پزشكي استفاده مي شود. اينجا هم ليزر مي تواند ابزار تشخيص و يا وسيله برگشت ناپذير مولكولهاي زنده يك سلول و يا يك بافت باشد. ( زيست شناسي نوري و جراحي ليزري)


در زيست شناسي مهمترين كاربرد ليزر به عنوان يك وسيله تشخيصي است. ما در اينجا تكنيك هاي ليزري زير را ذكر مي كنيم :
الف) فلوئورسان القايي به وسيله تپهاي فوق العاده كوتاه ليزر در DNA در تركيب رنگي پيچيده DNA و در مواد رنگي موثر در فتوسنتز
ب) پراكندگي تشديدي رامان به عنوان روشي براي مطالعه ملكولهاي زنده مانند هموگلوبين و يا رودوپسين ( عامل اصلي در سازوكار بينايي)


ج) طيف نمايي همبستگي فوتوني براي بدست آوردن اطلاعاتي در مورد ساختار و درجه انبوهش انواع ملكولهاي زنده
د) روشهاي تجزيه فوتوني درخشي پيكوثانيه اي براي كاوش رفتار ديناميكي مولكولهاي زنده در حالت برانگيخته
به ويژه بايد از روشي موسوم به ميكروفلوئورمتر جريان ياد كرد. در اينجا سلولهاي پستانداران در حالت معلق مجبور مي شوند كه از يك اتاقك مخصوص جريان عبور كنند كه در آنجا رديف مي شوند و سپس يكي يكي از باريكه كانوني شده ليزر يوني آرگون عبور مي كنند. با قرار دادن يك آشكارساز نوري در جاي مناسب مي توان اين كميت ها را اندازه گيري كرد :
الف) نورماده اي رنگي كه به يك جزء خاص تشكيل دهنده سلول يعني

DNA متصل ( كه اطلاعاتي راجع بع مقدار آن جزء تشكيل دهنده سلول را به دست مي دهد) امتياز ميكروفلوئورمتري جريان در اين است كه اندازه گيري ها را براي تعداد زيادي از سلولها در مدت زمان محدود ميسر مي سازد. به اين وسيله مي توانيم دقت خوبي براي اندازه گيري آماري داشته باشيم.


در زيست شناسي از ليزر براي ايجاد تغيير برگشت ناپذير در ملكولهاي زنده و يا اجزاي تشكيل دهنده سلول هم استفاده مي شود. به ويژه تكنيك هاي معروف به ريز - باريكه را ذكر مي كنيم. در اينجا نور ليزر ( مثلا يك ليزر Ar+ تپي ) به وسيله يك عدسي شيئي ميكروسكوپ مناسب در ناحيه اي از سلول با قطري در حدود طول موج ليزر (05 µm) كانوني مي شود منظور اصلي از اين تكنيك مطالعه رفتار سلول پس از آسيبي است كه با ليزر در ناحيه خاصي از آن ايجاد شده است.


در زمينه پزشكي بيشترين كاربرد ليزرها در جراحي است ( جراحي ليزري) اما در بعضي موارد ليزر براي تشخيص نيز به كار مي رود. ( استفاده باليني از ميكروفلوئورمتر جريان - سرعت سنجي دوپلري براي اندازه گيري سرعت خون - فلوئورسان ليزري - آندوسكوپي ناي براي آشكارسازي تومورهاي ريوي در مراحل اوليه


در جراحي از باريكه كانوني شده ليزر ( اغلب ليزر CO<SUB>2 ) به جاي چاقوي جراحي معمولي ( يا برقي ) استفاده مي شود. باريكه فروسرخ ليزر CO<SUB>2 به شدت به وسيله ملكولهاي آب موجود در بافت جذب مي شود و موجب تبخير سريع اين ملكولها و در نتيجه برش بافت مي شود. برتريهاي اصلي چاقوي ليزري را مي توان به صورت زير خلاصه كرد :


الف) دقت بسيار زياد به ويژه هنگامي كه باريكه با يك ميكروسكوپ مناسب هدايت شود ( جراحي ليزر)
ب) امكان عمل در نواحي غير قابل دسترس.. بنابراين عملا هر ناحيه از بدن را كه با يك دستگاه نوري مناسب ( مثلا عدسي ها و آينه ها) قابل مشاهده باشد مي توان به وسيله ليزر جراحي كرد.
ج) كاهش فوق العاده خونروي در اثر برش رگهاي خوني به وسيله باريكه ليزر ( قطر رگي حدود 0/5 mm )


د) آسيب رساني خيلي كم به بافتهاي مجاور ( حدود چند ميكرومتر) اما در مقابل اين برتريها بايد اشكالات زير را هم در نظر داشت :
الف) هزينه زياد و پيچيدگي دستگاه جراحي ليزري
ب) سرعت كمتر چاقوي ليزري
ج) مشكلات قابليت اعتماد و ايمني مربوط به چاقوي ليزري
با اين اشاره اجمالي به جراحي ليزري اكنون مي خواهيم به شرح مفصلتري از تعدادي از اين كاربردها بپردازيم . در چشم بيماران مبتلا به مرض قند استفاده شده است در اين مورد باريكه ليزر به وسيله عدسي چشم بر روي شبكيه كانوني مي شود. پرتو سبز ليزر به شدت به وسيله گلبول هاي سرخ جذب مي شود و اثر حرارتي حاصل باعث اتصال دوباره شبكيه يا انعقاد رگهاي آن مي

شود. اكنون ليزر استفاده روزافزوني در گوش و حلق و بيني پيدا كرده است. استفاده از ليزر در اين شاخه از جراحي جذابيت خاصي دارد. زيرا با اعضايي مانند ناي - حلق و گوش مياني سروكار دارد كه به علت عدم دسترسي به آن ها جراحي معمولي مشكل است. اغلب در اين مورد ليزر همراه با يك ميكروسكوپ استفاده مي شود. همچنين ليزر براي جراحي داخل دهان نيز مفيد است ( براي

برداشتن غده هاي مخاطي ). امتيازات اصلي در اينجا جلوگيري از خونريزي و فقدان لختگي خون و درد پس از عمل جراحي و بهبود سريع بيمار است. ليزر همچنين اهميت خود را در بهبود خونريزيهاي سنگين در جهاز هاضمه ثابت كرده است. در اين حالت باريكه ليزر ( معمولا ليزر نئودميوم يا آرگون

يوني ) به وسيله يك تار نوري مخصوص كه در داخل يك آندوسكوپي داخلي قرار گرفته است پرتو ليزر را به ناحيه مورد معالجه هدايت مي كند. ليزر همچنين در بيماري زنان مفيد است درحالي كه اغلب به همراه يك ميكروسكوپ استفاده مي شود. كاهش قابل ملاحظه درد و لخته شدن خون ارزش مجدد چاقوي ليزري را بيان مي كند. در پوست درماني اغلب از ليزر براي برداشتن خالها و معالجه امراض رگها استفاده مي شود. بالاخزه استفاده از ليزرها در جراحي عمومي و جراحي غده اميدوار كننده است.


تمام نگاري
تمام نگاري ( هولوگرافي) يك تكنيك انقلابي است كه عكسبرداري سه بعدي (يعني كامل ) از يك جسم و يا يك صحنه را ممكن مي كند. اين تكنيك در سال 1948 توسط گابور ابداع شد ( در آن زمان به منظور بهتر كرده توان تفكيك ميكروسكوپ الكتروني پيشنهاد شد) و به صورت يك پيشنهاد عملي در آمدو اما قابليت واقعي اين تكنيك پس از اختراع ليزر نشان داده شد.


اساس تمام نگاري به اين صورت است كه باريكه ليزر بوسيله آينه كه قسمتي از نور را عبور مي دهد به دو باريكه ( بازتابيده و عبوري) تقسيم مي شوند. باريكه بازتابيده مستقيما به صفحه حساس به نور برخورد مي كند در حالي كه باريكه عبوري جسمي را كه بايد تمام نگاري شود

روشن مي كند. به اين ترتيب قسمتي از نوري كه از جسم پراكنده شده هم روي صفحه حساس ( فيلم ) مي افتد. به علت همدوس بودن باريكه ها يك نقش تداخلي از تركيب دو باريكه روي صفحه تشكيل مي شود حالا اگر اين فيلم ظاهر شود و تحت بزرگنمايي كافي بررسي شود مي توان اين فريزهاي تداخلي را مشاهده كرد. فاصله بين دو فريز تاريك متوالي معمولا حدود 1 ميكرومتر است. اين نقش تداخلي پيچيده است و هنگامي كه صفحه را به وسيله چشم بررسي مي كنيم به نظر نمي رسد كه حامل تصوير مشابه با جسم اوليه باشد اما اين فريزهاي تداخلي در واقع حامل ضبط كاملي از جسم اوليه است.


حال فرض كنيد كه صفحه ظاهر شده را دوباره به محلي كه در معرض نور قرار داشت بازگردانيم و جسم تحت مطالعه را برداربم باريكه بازتابيده اكنون با فريزهاي روي صفحه برهمكنش مي كنند و دوباره در پشت صفحه يك باريكه پراشيده ايجاد مي كندبنابراين ناظري كه به صفحه نگاه مي كند جسم را در پشت صفحه مي بيند طوري كه انگار هنوز هم جسم در آنجاست.


يكي از جالبترين خصوصيات تمام نگاري اين است كه جسم بازسازي شده رفتار سه بعدي نشان مي دهد بنابراين با حركت دادن چشم از محل تماشا مي توان طرف ديگر جسم را مشاهده كرد. توجه كنيد كه براي ضبط تمام نگار بايد سه شرط اصلي را براورد: الف) درجه همدوسي نور ليزر بايد به اندازه كافي باشد تا فريزهاي تداخلي در روي صفحه تشكيل شود. ب) وضعيت نسبي جسم -

صفحه و باريكه ليزر نبايد در هنگام تاباندن نور به صفحه كه حدود چند ثانيه طول مي شكد تغيير كند در واقع تغيير محل نسبي بايد كمتر از نصف طول موج ليزر باشد تا از درهم شدن نقش تداخلي جلوگيري كند. ج) قدرت تفكيك صفحه عكاسي بايد به اندازه كافي زياد باشد تا بتواند فريزهاي تداخلي را ضبط كند.


تمام نگاري به عنوان يك تكنيك ضبط و بازسازي تصوير سه بعدي بيشترين موفقيت را تاكنون در كاربردهاي هنري داشته است تا در كاربردهاي علمي . اما بر اساس تمام نگاري از يك تكنيك تداخل سنجي تمام نگاشتي در كاربردهاي علمي به عنوان وسيله اي براي ضبط و اندازه گيري واكنشها و ارتعاشات اجسام سه بعدي استفاده شده است.


اندازه گيري و بازرسي
خصوصيات جهتمندي درخشايي و تكفامي ليزر باعث كاربردهاي مفيد زيادي براي اندازه گيري و بازرسي در رشته مهندسي سازه و فرايندهاي صنعتي كنترل ابزار ماشيني شده است. در اين بخش تعيين فاصله بين دو نقطه و بررسي آلودگي را نيز مد نظر قرار مي دهيم


يكي از معمولترين استفاده هاي صنعتي ليزر هم محور كردن است. براي اينكه يك خط مرجع مستقيم براي هم محور كردن ماشين آلات در ساخت هواپيما و نيز در مهندسي سازه براي ساخت بناها پلها و يا تونلها داشته باشيم استفاده از جهتمندي ليزر سودمند است. در اين زمينه ليزر به خوبي جاي وسايل نوري مانند كليماتور و تلسكوپ را گرفته است. معمولا از يك ليزر هليم - نئون با توان كم استفاده مي شود و هم محور كردن عموما به كمك آشكارسازهاي حالت جامد به شكل

ربع دايره اي انجام مي شود. محل برخورد باريكه ليزر روي گيرنده با مقدار جريان نوري روي هر ربع دايره معين مي شود. در نتيجه هم محور شدن بستگي به يك اندازه گيري الكتريكي دارد و در نتيجه نيازي به قضاوت بصري آزمايشگر نيست. در عمل دقت رديف شدن از حدود 5µm تا حدود 25µm به دست آمده است.


از ليزر براي اندازه گيري مسافت هم استفاده شده است. روش استفاده از ليزر بستگي به بزرگي طول مورد نظر دارد . براي مسافتهاي كوتاه تا 50 متر روشهاي تداخل سنجي به كار گرفته مي شوند كه در آن ها از يك ليزر هليم - نئون پايدار شده فركانسي به عنوان منبع نور استفاده مي شود. براي مسافتهاي متوسط تا حدود 1 كيلومتر روشهاي تله متري شامل مدوله سازي دامنه به كار گرفته مي شود. براي مسافت هاي طولاني تر مي توان زمان در راه بودن تپ نوري را كه از ليزر گسيل شده است و از جسمي بازتابيده مي شود اندازه گيري كرد.


در اندازه گيري تداخل سنجي مسافت از تداخل سنج مايكلسون استفاده مي شود. باريكه ليزر به وسيله يك تقسيم كننده نور به يك باريكه اندازه گيري و يك باريكه مرجع تقسيم مي شود باريكه مرجع با يك آينه ثابت بازتابيده مي شود در حالي كه باريكه اندازه گيري از آينه اي كه به جسم مورد اندازه گيري متصل شده است بازتاب پيدا مي كند. سپس دو باريكه بازتابيده مجددا با يكديگر تركيب مي شوند به طوري كه با هم تداخل مي كنند و دامنه تركيبي آن ها با يك آشكار ساز اندازه گيري مي شود. هنگامي كه محل جسم در جهت باريكه به اندازه نصف طول موج ليزر تغيير كند سيگنال

تداخل از يك ماكزيموم به يك مينيموم مي رسد و سپس دوباره ماكزيموم مي شود. بنابراين يك سيستم الكترونيكي شمارش فريزها مي تواند اطلاعات مربوط به جابجايي جسم را به دست دهد. اين روش اندازه گيري معمولا در كارگاههاي ماشين تراش دقيق مورد استفاده قرار مي گيرد و امكان اندازه گيري طول با دقت يك در ميليون را مي دهد. بايد يادآوري كرد كه در اين روش فقط مي توان فاصله را نسبت به يك مبدا اندازه گيري كرد. برتري اين روش در سرعت دقت و انطباق با سيستم هاي كنترل خودكار است.


براي فاصله هاي بزرگتر از روش تله متري مدوله سازي دامنه استفاده مي شود و فاصله روي اختلاف فاز بين دو باريكه ليزر مدوله مي شود و فاصله از روي اختلاف فار بين دو باريكه گسيل شده و بازتابيده معين مي شود. باز هم دقت يك در ميليون است. از اين روش در مساحي زمين و نقشه كشي استفاده مي شود. براي فواصل طولاني تر از 1 كيلومتر فاصله با اندازه گيري زمان پرواز يك

تپ كوتاه ليزري گسيل شده از ليزر ياقوت و يا ليزر CO2 انجام مي گيرد. اين كاربردها اغلب اهميت نظامي دارند و در بخشي جداگانه بحث خواهد شد كاربردهاي غير نظامي مانند اندازه گيري فاصله بين ماه و زمين با دقتي حدود 20 سانتي متر و تعيين برد ماهواره ها هم قابل ذكر است.


درجه بالاي تكفامي ليزر امكان استفاده از آن را براي اندازه گيري سرعت مايعات و جامدات به روش سرعت سنجي دوپلري فراهم مي سازد. در مورد مايعات مي توان باريكه ليزر را به مايع تابانده و سپس نور پراكنده شده از آن را بررسي كرد. چون مايع روان است فركانس نور پراكنده شده به خاطر اثر دوپلر كمي با فركانس نور فرودي تفاوت دارد. اين تغيير فركانس متناسب با سرعت مايع است. بنابراين با مشاهده سيگنال زنش بين دو پرتو نور پراكنده شده و نور فرودي در يك آشكار ساز مي توان سرعت مايع را اندازه گيري بدون تماس انجام مي شود. و نيز به خاطر تكفامي بالاي نور ليزر براي برد وسيعي از سرعتها خيلي دقيق است.


يكي از سرعت سنجهاي خاص ليزر اندازه گيري سرعت زاويه اي است. وسيله اي كه براي اين منظور طراحي شده است ژيروسكوپ ليزريناميده مي شود و شامل ليزري است كه كاواك آن به شكل حلقه اي است كه از سه آينه به جاي دو آينه معمول استفاده مي شود. اين ليزر مي تواند نوسان مربوط به انتشار نور را هم در جهت عقربه ساعت و هم در خلاف آن به دور حلقه تامين كند. فركانسهاي تشديدي مربوط به هر دو جهت انتشار را مي توان با استفاده از اين شرط كه طول

تشديد كننده ( حلقه اي ) برابر مضرب صحيحي از طول موج باشد به دست آورد. اگر حلقه در حال چرخش باشد در مدت زماني كه لازم است نور يك دور كامل بزند زاويه آينه هاي تشديد كننده به اندازه يك مقدار خيلي كوچك ولي محدود حركت خواهد كرد. طول موثر براي باريكه اي در همان

چرخد. در نتيجه فركانس هاي دو باريكه اي كه در خلاف جهت يكديگر مي چرخند كمي تفاوت دارد و اختلاف اين فركانسهاي متناسب با سرعت زاويه اي تشديد كننده است . با ايجاد تپش بين دو باريكه مي توان سرعت زاويه اي را اندازه گيري كرد. ژيروسكوپ ليزري امكان اندازه گيري با دقتي را فراهم مي كند كه قابل مقايسه با دقت پيچيده ترين و گرانترين ژيروسكوپ هاي معمولي است.


كاربرد مصرفي ديگر و يا به عبارت بهتر كاربرد مصرفي واقعي عبارت از ديسك ويدئويي و ديسك صوتي است. يك ديسك ويدئو حامل يك برنامه ويدئويي ضبط شده است كه مي توان آن را بر روي دستگاه تلويزيون معمولي نمايش داد. سازندگان ديسك ويدئويي اطلاعات را با استفاده از يك سابنده روي آن ضبط مي كنند كه اين اطلاعات به وسيله ليزر خوانده مي شود. يك روش معمول

ضبط شامل برشهاي شياري با طول ها و فاصله هاي مختلف است عمق اين شيارها 4/1 طول موج ليزري است كه از آن در فرايند خواندن استفاده مي شود. در موقع خواندن باريكه ليزر طوري كانوني مي شود كه فقط بر روي يك شيار بيفتد. هنگامي كه شيار در مسير لكه باريكه ليزر واقغ شود بازتاب به خاطر تداخل ويرانگر بين نور بازتابيده از ديوارهاي شيار و به آن كاهش پيدا مي كند. به عكس نبودن شيار باعث يك بازتاب قوي مي شود. بدين طريق مي توان اطلاعات تلويزيوني را به صورت رقمي ضبط كرد.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید