بخشی از مقاله

ليزر(كاربردها)



مقدمه
امروزه ليزر كاربردهاي بيشماري دارد كه همه زمينه هاي مختلف علمي و فني فيزيك-شيمي-زيست شناسي - الكترونيك و پزشكي را شامل مي شود. همه اين كاربردها نتيجه مستقيم همان ويژگي هاي خاص نور ليزر است
لیزر چیست ؟
نور ليزر نوع كاملاً جديدي از نور است؛ درخشان‌تر و شديدتر از هرچه كه در طبيعت يافت مي‌شود. مي‌توان نور ليزري آن‌چنان قوي توليد كرد كه هر ماده‌ي شناخته شده‌ي روي زمين را در كسري از ثانيه بخار كند. مي تواند سخترين فلزات را سوراخ كند يا به راحتي جسم سختي مثل الماس را سوراخ كند و از آن بگذرد.
برعكس، باريكه‌ي كم قدرت و فوق‌‌العاده دقيق انواع ديگر ليزر را مي‌توان براي انجام دادن كارهاي بسيار ظريف مثل جراحي روي چشم انسان به كار برد. نور ليزر را مي‌توان خيلي دقيق كنترل كرد و به صورت باريكه‌ي مداومي به نام موج پيوسته يا انفجارهاي سريعي به نام پالس درآورد.


اگرچه اصول بنيادي ليزر از 40 سال پيش شناخته شده بود، نمايش اولين ليزر، دريچه‌‌اي را به طرف يكي از هيجان انگيزترين و پردامنه‌ترين پيشرفت هاي تكنولوژي قرن بيستم گشود. در ظرف چند سال پس از نمايش اولين ليزر، انواع بسيار گوناگوني از ليزرها به صورت ابزارهاي عملي به صور گوناگون به كار گرفته شدند. ليزرها در تكنولوژي انقلابي جديد پديد آورده‌اند و تأ ثير آن‌ها بر زندگي ما در آينده نيز ادامه خواهد داشت.


امروزه گستره‌‌ي وسيعي از ليزرها در همه جا به كار گرفته شده‌اند. فروشگاه‌هاي بزرگ و بسياري از انبارهاي بزرگ خورده‌فروشي براي جستجوي خود‌به‌خود، ثبت قيمت‌‌ها و صورت‌برداري از اقلام خريداري شده، در قسمت حساب كننده از ليزر بهره مي‌گيرند. در دستگاه‌‌هاي ويدئويي از نور ليزر براي خواندن ديسك‌هاي ويدئويي و ايجاد تصوير متحرك همراه با صدا استفاده مي‌كنند. مقدار زيادي اطلاعات را روي ديسك‌‌هاي ليزري ثبت مي‌كنند تا بعداً روي صفحه‌ي كامپيوتر خوانده شوند يا توسط چاپگرهاي ليزري به شكل نسخه‌ي سخت روي كاغذ چاپ شوند.


در پزشكي نور ليزر به عنوان نوع جديدي چاقوي جراحي بدون خونريزي استفاده مي‌شوند و وقتي كه نسجي مثل قسمت معيوب كيسه‌ي صفرا در خلال جراحي برداشته مي‌شود، رگ‌هاي خوني بسته مي‌‌شوند. كارهاي دندانپزشكي با ليزر درد كمتري دارند و براي روكش و پل دندان از ليزرها استفاده مي‌شود.


در صنعت از ليزرها براي عمليات گرمايي فلزات، جوش دادن قسمت‌ها به يكديگر و وسايل هم‌ترازي دقيق استفاده مي‌شود. ليزرها را براي اندازه‌گيري دقيق فاصله‌هاي خيلي بزرگ و نيز فاصله‌هاي خيلي كوچك به كار مي‌برند. افزون بر اين‌ها ليزرها را همراه با تارهاي نوري، براي انتقال بهتر داده‌ها و بهبود ارتباط تلفني به كار مي‌گيرند. ليزرها در حال تغيير دادن نحوه‌ي پژوهش دانشمندان هستند. ليزرها مي‌توانند چشمه‌ي جديدي از قدرت الكتريكي بيافرينند، مشابه فرايندي كه در خورشيد براي توليد انرژي به وجود مي‌‌آيد.
خواص نور ليزر و كاربرد‌هاي آن
‏ از نخستين روزهاي ساخت ليزر پي برده شد كه نور ليزر خواص مشخصه‌اي دارد كه آن را از نورهاي ايجاد شده از ساير منابع، متمايز مي‌كند. در ابتدا به اين ويژگي‌ها و نحوه ايجاد آنها توسط ليزر اشاره خواهيم كرد. ليزر داراي سه ويژگي مهم است:
تك‌فامي


‏ در توضيح اين ويژگي لازم است ابتدا با مفهوم گسيل القايي ( نشر القايي)آشنا شويم. گسيل پرتو توسط الكترونهاي برانگيخته در داخل اتم به دو صورت است :1 ) گسيل خود به‌خودي 2) گسيل القايي
فرض كنيد ‏‎1 ‎‏ ‏e‏ و ‏e2‎‏ دو تراز متوالي از يك اتم با انرژي‌هاي ‏‎1‎‏ ‏E‏ و‏‎2‎‏ ‏E‏ باشد و الكتروني در تراز ‏‎ e1 ‎در حالت پايه خود قرار گرفته باشد. اگر به هر دليلي اين الكترون از‎ ‎تراز ‏‎1‎‏ ‏e‏ به تراز بالاتر ‏‎2‎‏ ‏e‏ برود گفته ميشود اتم تحريك شده است يا در حالت برانگيخته قرار دارد. چون اين حالت يك حالت‏‎ ‎‏ ناپايدار است اتم تمايل دارد هرچه زودتر به حالت پايدار باز گردد. به همين دليل الكترون مزبور بلافاصله به حالت قبلي در تراز‏‎1‎‏ ‏e‏ بر خواهد گشت. از طرفي چون اين دو تراز اختلاف انرژي ‏‎1‎‏ ‏E‏ ‏E 2-‎‏ دارد بنا بر اصل پايستگي انرژي، انرژي اضافي الكترون به صورت تابش با فركانس ‏V، حين بازگشت به تراز اول گسيل مي‌شود. به اين فرآيند گسيل خودبه‌خودي گويند. حال اگر الكتروني در تراز‏‎2‎‏ ‏e‏ در حالت پايه خود قرار داشته باشد و ما به طريقي اتم را تحريك كنيم ( ميدان الكترومغناطيسي، تابش، حرارت و... ) در اثر اين القا الكترون مزبور تراز ‏‎2‎‏ ‏E‏ را ترك نموده وبه تراز ‏‎ E1‎برود و حين اين انتقال ( بنا به اصل پايستگي انرژي ) تابش گسيل كند به اين تابش گسيل القايي يا نشر القايي گويند. ‏


‏ هر كدام از اين فرآيندها ويژگي‌هاي خاص خود را دارد. در گسيل خودبه‌خودي تابش‌هاي گسيل شده به صورت كاتوره‌اي و در تمام جهات گسترده است. اما در گسيل القايي جهت تابش در يك راستاي معين خواهد بود. از طرفي در گسيل خودبخودي فوتونهاي تابشي در اثر گزار بين اتمهاي ترازهاي اتمي يا مولكولي مختلف و متفاوت از هم به وجود مي‌آيند پس اين تابش‌ها طيف گسترده‌اي از فركانس‌ها را شامل مي‌شود. ‏


‏ اما در گسيل القايي تابش در اثر گزار بين ترازهاي اتمي يا مولكولي مشابه گسيل مي‌شود. بنابراين همه تابش‌ها تقريبا فركانس يكساني دارد. معمولا در ليزر از فرآيند گسيل القايي استفاده مي‌شود. اما براي داشتن گسيل القايي طولاني مدت به مولكول‌هايي شامل دوتراز كه تراز بالايي آن پروتراز پاييني آن خالي باشد، نياز داريم. اما آنچه كه نظريه‌هاي كوانتومي بيان مي‌كنند اين است كه بنا به قاعده گزينش در اتم‌ها ابتدا ترازهاي پايين‌تر پر مي‌شود. بنابراين به وضعيت به‌وجود آمده در ليزر، وارونگي جمعيت گويند. نحوه ايجاد وارونگي جمعيت بسته به نوع ليزر متفاوت است. مثلا در ليزر هليوم نئون مخلوط كردن اين دو گاز منجر به جفت شدن برخي تراز‌ها ي اتمي آن دو شده و وارونگي جمعيت مورد نياز را تامين مي‌كند. به اين ترتيب ليزر قادر به ايجاد تابشي تك فركانس خواهد بود. با اين وجود براي تك فركانس شدن بيشتر از يك عنصر اپتيك مانند بازآواگر( سنجه) نيزدر ليزر استفاده مي‌شود. ‏


ويژگي تك‌فامي نور ليزر بيشتر كاربرد شيميايي دارد. به عنوان مثال براي جدا سازي ايزوتوپ‌هاي يك عنصر به يك منبع تك‌فام مانند ليزر نياز است. ايزوتوپ‌هاي يك عنصر از نظر محتوا باهم متفاوت است پس فركانس‌هاي جذب آنها نيز اندكي متفا وت خواهد بود كه تنها نور ليزر قادر به تفكيك آنها است. تمايل زياد به استفاده از اين كاربرد در صنايع هسته‌اي نيز غيرمنتظره نيست. ‏


همدوسي
‏ تابش الكترو مغناطيس به وسيله بارهاي الكتريكي نوسان كننده توليد مي‌شود. بسامد نوسان نوع تابشي را كه گسيل مي‌شود، معين مي‌كند. اگر در يك چشمه، بارها ي الكتريكي به طور هماهنگ نوسان كند چشمه را همدوس و تابش حاصل را تابش همدوس مي‌ناميم. همانطور كه قبلا گفته شد در ليزر از گسيل القايي استفاده مي‌شود. در اين فرآيند مي‌توان اتم را به نحوي تحريك كرد كه همه الكترونهاي برانگيخته فقط به تراز‌هاي خاصي برود و در نتيجه فركانس تابشي آنها همه در يك محدوده خواهد بود. پس تمام اين تابش‌ها با هم هماهنگ است كه اين همان تعريف چشمه همدوس است. از همدوسي نور ليزر مي‌توان در تمام‌نگاري استفاده كرد. تمام‌نگاري روشي جهت تهيه تصاوير سه بعدي است. در اين روش تصوير

ويژه‌اي به نام تمام نگاشت روي فيلم عكاسي تشكيل مي‌شود كه بر خلاف ديگر تصاوير متداول عكاسي، حاوي اطلاعاتي نه تنها پيرامون شدت بلكه در مورد فاز نور بازتابيده از جسم نيز هست. واضح است كه منبع نور آشفته چون خود داراي پرتو هايي با فازهاي مختلف است قادر به تشكيل چنين تصويري نخواهد بود. تنها مشكل موجود براي چنين تصاويري آن است كه تنها امكان تهيه تمام نگاشت‌هاي تك‌فام وجود دارد زيرا براي تشخيص رنگهاي واقعي جسم بايد از تابش طول موج‌هاي مختلف به طور همزمان استفاده كرد كه در آن صورت اطلاعات مربوط به فاز از بين مي‌رود. ‏
شدت زياد


‏ شدت زياد، خاصيتي است كه بيش از ساير موارد همراه نور ليزر است و در حقيقت ليزرها بالاترين شدت‌هاي شناخته شده روي زمين را ايجاد مي‌كند. از آنجا كه ليزر باريكه‌اي موازي از نور را نه در تمام جهت‌ها، بلكه در راستاي مشخصي گسيل مي‌كند. مناسب‌ترين معيار شدت، تابيدگي است. بنا بر رابطه بين توان تابش شده وتابيدگي:
‏I = P / A


‏ كه در آن ‏P‏ توان و ‏A‏ مساحت است مي‌توان در مورد شدت‌ها ي زياد بحث كرد. ازآنجايي كه خروجي منابع نور معمولي اكثرا پرتو‌هاي واگرا است با دور شدن از چشمه به علت افزايش مساحت با ثابت ماندن توان (توان به ويژگي خود چشمه بستگي دارد )ميزان شدت آن كاهش مي‌يابد اما در ليزر به علت موازي بودن پرتوها، هر چه فاصله از منبع بيشتر شود با ثابت ماندن توان، مساحت سطح مقطع باريكه خروجي نيز تقريبا ثابت است و در نتيجه شدت در فاصله دوراز منبع همان مقداري را دارد كه پرتو خروجي از منبع دارد. ‏
‏ اما اينكه چرا شدت خروجي از ليزر تا به اين اندازه زياد است، به توان ليزر بر مي‌گردد. داخل ليزر سيستمي وجود دارد كه نور ورودي به هنگام خروج تقويت مي‌شود. همچنين با استفاده از ابزارهاي اپتيك مناسب در ليزر مي‌توان به شدت‌هايي دست يافت كه از شدت خود منبع فراتر رود. ‏


‏ لازم به توضيح است كه شدت نور خروجي از ليزر داراي توزيع گوسي است، يعني شدت براي لحظه كوتاهي بيشترين مقدار خود را دارد. در ابتدا يك صعود ودر انتها يك نزول براي آن وجود دارد. پس يك طول عمر براي شدت حداكثر مي‌توان تعريف كرد. طول عمر شدت ماكزيمم معمولا خيلي كوتاه است. يكي از كاربرد‌هاي كوتاه بودن عمر شدت‌هاي بالا در هرتپ، در چشم پزشكي است. مثلا پارگي شبكيه را كه باعث كوري موضعي مي‌شود مي‌توان با جوشكاري نقطه‌اي توسط تپ‌هاي پر شدت نور حاصل از ليزر آرگون با بافت نگهدارنده آن متصل كرد. به علت كوتاه بودن عمر يك تپ، حين عمل نيازي به بيهوشي، بي حركت كردن طولاني چشم و... وجود ندارد. در كاربرد‌هاي ديگر پزشكي كوتاه بودن طول عمرتپ مانع از احساس درد در بيماران مي‌شود. چرا كه زمان هرتپ بسيار كوتاهتر از زمان لازم براي فرستادن پيغام توسط اعصاب به مغز و بازگشت آن به محل درد است. ‏


ساختمان ليزر


در شكل شماره (1) طرح ساده‌اي از يك ليزر گازي را مشاهده مي‌كنيد. ساختار اصلي در اكثر ليزرها مشابه است. ليزر در واقع يك نوسان كننده اپتيك است كه از يك محيط تقويت‌كننده نور كه در داخل يك بازآواگر قرار دارد تشكيل مي‌شود. پس اصلي‌ ترين قسمت در ليزر محيطي است كه بتواند نور عبوري را تقويت كند. در ليزر‌هاي گازي از مخلوط يك يا چند گاز ( هليوم، نئون، آرگون و... ) به صورت خالص به عنوان محيط تقويت كننده استفاده مي‌شود. بخار فلزي كادميوم، جيوه، سرب و... نيز در ليزر‌هاي گازي كاربرد دارد. از انواع ديگر ليزر‌هاي گازي، ليزر مولكول ازت( ‏‎2‎‏ ‏N‏) و ليزر دي اكسيد كربن (‏CO2‎‏) است.‏


محيط تقويت كننده معمولا توسط يك محرك بيروني به كار مي‌افتد و شروع به تابش مي‌كند. در اثر اين تحريك، الكترون‌هاي هر اتم مدار خود را ترك كرده به مدار پايين تر در اتم مربوط مي‌رود. جهت برقراري اصل پايستگي انرژي (به علت وجود اختلاف انرژي بين دو مدار) حين اين گذار تابش خواهند كرد. اين تابش نسبتا تك فام است زيرا عمل تحريك طوري است كه عمل گذار بين تراز‌هاي يكسان اتفاق بيفتد. در ليزر نشان داده شده اين محرك استفاده از روش تخليه جريان الكتريكي است كه به دو نوع تخليه جريان مستقيم و تخليه جريان متناوب در ليزر‌هاي گازي متداول است. روش تخليه جريان متناوب ساده‌ترين روش تحريك است چرا كه منبع تغذيه مي‌تواند يك مبدل عمومي ولتاژ كه به الكترود‌هاي فلزي سرد در داخل لامپ متصل مي‌شود، باشد. از روش‌هاي ديگر بر انگيزش الكتريكي محيط ليزري، مي‌توان روش تخليه الكترودي با بسامد بالا ( كه در اولين ليزر هليوم نئون ساخته شده توسط جوان و همكارانش استفاده شده بود. ) و روش تپ‌هاي فشار قوي ( براي استفاده در ليزر‌هاي تپي پر توان) اشاره كرد. ‏


‏ در قسمت ديگر يك ليزر در دوجداره ابتدا و انتها از دو آينه صاف كه با زاويه معلوم نسبت به افق به طور موازي با هم قرار دارد، استفاده مي‌شود به چنين سيستم اپتيك، دريچه‌هاي بروستر گفته مي‌شود. كاربرد اين دريچه‌ها در قطبيده نمودن پرتوهاست. اين دريچه‌ها براي يك جهت قطبيدگي خاص شفاف است ولي براي عبور قطبيدگي عمود بر آن ضريب عبور صفر است و تمام نور بازتابيده خواهد شد. استفاده از اين وسيله در ليزر موجب قطبيدگي خطي نور خروجي از ليزر خواهد شد. ‏


‏ قسمت مهم ديگر ليزر استفاده از بازآواگر است. بازآواگر وسيله‌اي اپتيكي است كه از دو آينه (تخت يا خميده) تشكيل مي‌شود به طوري كه محيط تقويت كننده در ميان آنها قرار دارد. تابش خروجي از تقويت كننده پس از قطبيده شدن توسط دريچه‌هاي بروستر به يكي از اين آينه‌ها برخورد نموده جزئي از پرتو عبور و جرئي از آن بازتاب مي‌يابد. پرتو بازتابيده دوباره مسير محيط تقويت كننده و دريچه بروستر را پيموده و به آينه سمت مقابل بر خورد مي‌كند. به اين ترتيب عمل عبور و بازتاب بار‌ها تكرار مي‌شود. نهايتا نور خروجي از تقويت كننده در اثر رفت و آمد بين دو آينه به صورت يك موج ايستاده در مي‌آيد. لازم به ذكر است كه براي خروج انرژي از بازآواگر دو آينه به طور جزئي شفاف است. ويژگي پرتو خروجي از بازآواگر تك فام بودن آن است. در وواقع بازآواگر عمل گزينش فركانس را انجام مي‌دهد. ‏


شكل شماره (2) طرحي كلي از داخل يك ليزر هليوم-نئون را نشان مي‌دهد. محيط ليزري، دريچه‌هاي بروستر، آينه‌هاي بازآواگر، سيستم مربوط به محرك، محيط ليز كننده و ساير جزئيات مورد نياز مانند لايه محافظ و شفاف آلومينيومي جهت جلوگيري از خروج انرژي از ديواره‌ها و بازتاب آن به داخل محيط تقويت كننده در شكل نشان داده شده است.
لیزر و کاربردهای آن


فكر ساختن وسيله‌اي كه نور همدوس توليد كند ، مدتها دانشمندان قرن حاضر را به خود مشغول داشته بود . در سال 1985 فيزيكدان مشهور آمريكايي چالز تاونز راه اين كار را پيدا كرد . دو سال بعد دانشمند ديگر آمريكايي ، تئودور مايمن به نظريه تاونز جامه عمل پوشاند و اولين ليزر را با بلوري از ياقوت مصنوعي ساخت اين دو بعداً به دريافت جايزه نوبل نايل آمدند . يك ليزر ياقوتي ساده از سه بخش تشكيل مي‌شود : استوانه‌اي از ياقوت مصنوعي ، يك چشمه نور ـ مثلاً يك لامپ گزنون كه مانند لامپ نئون كار مي‌كند . ( گزنون و زنون هر دو از گازهاي بي‌اثرند يعني اتمهايشان با اتمهاي ديگر مولكول نمي‌سازد . ) ـ و يك بازتابنده كه نور را از لامپ گزنون به ياقوت هدايت مي‌كند


استوانه ياقوتي ، بخش اصلي دستگاه است . قطر آن در حدود 7 ميليمتر و طولش 3.5 تا 5 cm است . دو قاعده استوانه صيقل خورده و نقره اندود شده است تا آينه كاملي باشد . قاعده ديگر نيز نقره اندود است ولي نه كاملاً به طوري كه مي‌تواند قسمتي از نور را از خود عبور دهد .
ياقوت بلور اكسيد آلومينيوم است كه در آن تعداد نسبتاً كمي اتم كروم معلق است . اتمهاي كروم از طريق گسيل القايي ، كوانتوم نور توليد مي‌كنند ، اتمهاي اكسيژن و آلومينيم كه بقيه بلور را تشكيل مي‌دهند فقط اتمهاي كروم را در جايشان نگه مي‌دارند. اتمهاي كروم نسبتاً بزرگ است و تعداد زيادي الكترون در مدارهايشان دارد . در اين جا فقط الكتروني مورد توجه ماست كه بيش از ديگران برانگيخته مي‌شود .


لازم به ذكر است واژه ليزر از حروف اول (( تقويت نور بوسيله گسيل برانگيخته تابش )) در زبان انگليسي گرفته شده كه آن را مي‌توان توسعه “maser” تقويت ميكروويو بوسيله گسيل برانگيخته تابش در محدوده فوتوني طيف امواج الكترومغناطيسي دانست


كاربرد ليزر در فيزيك و شيمي
اختراع ليزر و تكامل آن وابسته به معلومات پايه اي است كه در درجه اول از رشته فيزيك و بعد از شيمي گرفته شده اند. بنابراين طبيعي است كه استفاده از ليزر در فيزيك و شيمي از اولين كاربردهاي ليزر باشند
رشته ديگري كه در آن ليزر نه تنها امكانات موجود را افزايش داده بلكه مفاهيم كاملا جديدي را عرضه كرده است طيف نمايي است. اكنون با بعضي از ليزرها مي توان پهناي خط نوساني را تا چند ده كيلوهرتز باريك كرد ( هم در ناحيه مرئي و هم در ناحيه فروسرخ ) و با اين كار اندازه گيري هاي مربوط به طيف نمايي با توان تفكيك چند مرتبه بزرگي ( 3 تا 6) بالاتر از روش هاي معمولي طيف نمايي امكان پذير مي شوند. ليزر همچنين باعث ابداع رشته جديد طيف نمايي غير خطي شد كه در آن تفكيك طيف نمايي خيلي بالاتر از حدي است كه معمولا با اثرهاي پهن شدگي دوپلر اعمال مي شود. اين عمل منجر به بررسيهاي دقيقتري از خصوصيات ماده شده است.


در زمينه شيمي از ليزر هم براي تشخيص و هم براي ايجاد تغييرات شيميايي برگشت ناپذير استفاده شده است. ( فوتو شيمي ليزري) به ويژه در فون تشخيص بايد از روش هاي (پراكندگي تشديدي رامان ) و ( پراكندگي پاد استوكس همدوس رامان ) (CARS) نام ببريم. به وسيله اين روشها مي توان اطلاعات قابل ملاحظه اي درباره خصوصيات مولكولهاي چند اتمي به دست آورد ( يعني فركانس ارتعاشي فعال رامن - ثابتهاي چرخشي و ناهماهنگ بودن فركانس). روش CARS همچنين براي اندازه گيري غلظت و دماي يك نمونه مولكولي در يك ناحيه محدود از فضا به كار مي رود. از اين توانايي براي بررسي جزئيات فرايند احتراق شعله و پلاسما ( تخليه الكتريكي) بهره برداري شده است.


شايد جالبتري كاربرد شيميايي ( دست كم بالقوه ) ليزر در زيمنه فوتو شيمي باشد. اما بايد در نظر داشته باشيم به خاطر بهاي زياد فوتونهاي ليزري بهره برداري تجاري از فوتوشيمي ليزري تنها هنگامي موجه است كه ارزش محصول نهايي خيلي زياد باشد. يكي از اين موارد جداسازي ايزوتوپها است.
كاربرد در زيست شناسي
از ليزر به طور روزافزوني در زيست شناسي و پزشكي استفاده مي شود. اينجا هم ليزر مي تواند ابزار تشخيص و يا وسيله برگشت ناپذير مولكولهاي زنده يك سلول و يا يك بافت باشد. ( زيست شناسي نوري و جراحي ليزري)
در زيست شناسي مهمترين كاربرد ليزر به عنوان يك وسيله تشخيصي است. ما در اينجا تكنيك هاي ليزري زير را ذكر مي كنيم :
الف) فلوئورسان القايي به وسيله تپهاي فوق العاده كوتاه ليزر در DNA در تركيب رنگي پيچيده DNA و در مواد رنگي موثر در فتوسنتز
ب) پراكندگي تشديدي رامان به عنوان روشي براي مطالعه ملكولهاي زنده مانند هموگلوبين و يا رودوپسين ( عامل اصلي در سازوكار بينايي)
ج) طيف نمايي همبستگي فوتوني براي بدست آوردن اطلاعاتي در مورد ساختار و درجه انبوهش انواع ملكولهاي زنده


د) روشهاي تجزيه فوتوني درخشي پيكوثانيه اي براي كاوش رفتار ديناميكي مولكولهاي زنده در حالت برانگيخته
به ويژه بايد از روشي موسوم به ميكروفلوئورمتر جريان ياد كرد. در اينجا سلولهاي پستانداران در حالت معلق مجبور مي شوند كه از يك اتاقك مخصوص جريان عبور كنند كه در آنجا رديف مي شوند و سپس يكي يكي از باريكه كانوني شده ليزر يوني آرگون عبور مي كنند. با قرار دادن يك آشكارساز نوري در جاي مناسب مي توان اين كميت ها را اندازه گيري كرد :
الف) نورماده اي رنگي كه به يك جزء خاص تشكيل دهنده سلول يعني DNA متصل ( كه اطلاعاتي راجع بع مقدار آن جزء تشكيل دهنده سلول را به دست مي دهد) امتياز ميكروفلوئورمتري جريان در اين است كه اندازه گيري ها را براي تعداد زيادي از سلولها در مدت زمان محدود ميسر مي سازد. به اين وسيله مي توانيم دقت خوبي براي اندازه گيري آماري داشته باشيم.


در زيست شناسي از ليزر براي ايجاد تغيير برگشت ناپذير در ملكولهاي زنده و يا اجزاي تشكيل دهنده سلول هم استفاده مي شود. به ويژه تكنيك هاي معروف به ريز - باريكه را ذكر مي كنيم. در اينجا نور ليزر ( مثلا يك ليزر Ar+ تپي ) به وسيله يك عدسي شيئي ميكروسكوپ مناسب در ناحيه اي از سلول با قطري در حدود طول موج ليزر (05 µm) كانوني مي شود منظور اصلي از اين تكنيك مطالعه رفتار سلول پس از آسيبي است كه با ليزر در ناحيه خاصي از آن ايجاد شده است.


در زمينه پزشكي بيشترين كاربرد ليزرها در جراحي است ( جراحي ليزري) اما در بعضي موارد ليزر براي تشخيص نيز به كار مي رود. ( استفاده باليني از ميكروفلوئورمتر جريان - سرعت سنجي دوپلري براي اندازه گيري سرعت خون - فلوئورسان ليزري - آندوسكوپي ناي براي آشكارسازي تومورهاي ريوي در مراحل اوليه
در جراحي از باريكه كانوني شده ليزر ( اغلب ليزر CO2 ) به جاي چاقوي جراحي معمولي ( يا برقي ) استفاده مي شود. باريكه فروسرخ ليزر CO2 به شدت به وسيله ملكولهاي آب موجود در بافت جذب مي شود و موجب تبخير سريع اين ملكولها و در نتيجه برش بافت مي شود. برتريهاي اصلي چاقوي ليزري را مي توان به صورت زير خلاصه كرد :
الف) دقت بسيار زياد به ويژه هنگامي كه باريكه با يك ميكروسكوپ مناسب هدايت شود ( جراحي ليزر)


ب) امكان عمل در نواحي غير قابل دسترس.. بنابراين عملا هر ناحيه از بدن را كه با يك دستگاه نوري مناسب ( مثلا عدسي ها و آينه ها) قابل مشاهده باشد مي توان به وسيله ليزر جراحي كرد.
ج) كاهش فوق العاده خونروي در اثر برش رگهاي خوني به وسيله باريكه ليزر ( قطر رگي حدود 0/5 mm )
د) آسيب رساني خيلي كم به بافتهاي مجاور ( حدود چند ميكرومتر) اما در مقابل اين برتريها بايد اشكالات زير را هم در نظر داشت :
الف) هزينه زياد و پيچيدگي دستگاه جراحي ليزري


ب) سرعت كمتر چاقوي ليزري
ج) مشكلات قابليت اعتماد و ايمني مربوط به چاقوي ليزري
با اين اشاره اجمالي به جراحي ليزري اكنون مي خواهيم به شرح مفصلتري از تعدادي از اين كاربردها بپردازيم . در چشم بيماران مبتلا به مرض قند استفاده شده است در اين مورد باريكه ليزر به وسيله عدسي چشم بر روي شبكيه كانوني مي شود. پرتو سبز ليزر به شدت به وسيله گلبول هاي سرخ جذب مي شود و اثر حرارتي حاصل باعث اتصال دوباره شبكيه يا انعقاد رگهاي آن مي شود. اكنون ليزر استفاده روزافزوني در گوش و حلق و بيني پيدا كرده است. استفاده از ليزر در اين شاخه از جراحي جذابيت خاصي دارد. زيرا با اعضايي مانند ناي - حلق و گوش مياني سروكار دارد كه به علت عدم دسترسي به آن ها جراحي معمولي مشكل است. اغلب در اين مورد ليزر همراه با يك ميكروسكوپ استفاده مي شود. همچنين ليزر براي جراحي داخل دهان نيز مفيد است ( براي برداشتن غده هاي مخاطي ). امتيازات اصلي در اينجا جلوگيري از خونريزي و فقدان لختگي خون و درد پس از عمل جراحي و بهبود سريع

بيمار است. ليزر همچنين اهميت خود را در بهبود خونريزيهاي سنگين در جهاز هاضمه ثابت كرده است. در اين حالت باريكه ليزر ( معمولا ليزر نئودميوم يا آرگون يوني ) به وسيله يك تار نوري مخصوص كه در داخل يك آندوسكوپي داخلي قرار گرفته است پرتو ليزر را به ناحيه مورد معالجه هدايت مي كند. ليزر همچنين در بيماري زنان مفيد است درحالي كه اغلب به همراه يك ميكروسكوپ استفاده مي شود. كاهش قابل ملاحظه درد و لخته شدن خون ارزش مجدد چاقوي ليزري را بيان مي كند. در پوست درماني اغلب از ليزر براي برداشتن خالها و معالجه امراض رگها استفاده مي شود. بالاخزه استفاده از ليزرها در جراحي عمومي و جراحي غده اميدوار كننده است

كاربرد ليزر در مصارف نظامي

كاربردهاي نظامي ليزر هميشه عمده ترين كاربردهاي آن بوده است . فعلا مهمتريم كاربردهاي نظامي ليزر عبارت اند از:

الف) فاصله يا بهاي ليزري

ب) علامت گذارهاي ليزري

ج) سلاح هاي هدايت انرژي

فاصله ياب ليزري مبتني بر همان اصولي است كه در رادارهاي معمولي از آن ها استفاده مي شود. يك تپ كوتاه ليزري ( معمولا با زمان 10 تا 20 نانوثانيه) به سمت هدف نشانه گيري مي شود و تپ پراكنده برگشتي بوسيله يك دريافت كننده مناسب نوري كه شامل آشكارساز نوري است ثبت مي شود. فاصله مورد نظر با اندازه گيري زمان پرواز اين تپ ليزري به دست مي ايد. مزاياي اصلي فاصله ياب ليزري را مي توان به صورت زير خلاصه كرد

الف) وزن - قيمت و پيچيدگي آن به مراتب كمتر از رادارهاي معمولي است
ب) توانايي اندازه گيري فاصله حتي براي هنگامي كه هدف در حال پرواز در ارتفاع بسيار كمي از سطح زمين و يا دريا باشد

اشكال عمده اين نوع رادار در اين است كه باريكه ليزر در شرايط نامناسب رويت به شدت در جو تضعيف مي شود. فعلا چند نوع از فاصله يابهاي ليزري با بردهاي تا حدود 15 كيلومتر مورد استفاده اند

:الف) فاصله ياب هاي دستي براي استفاده سرباز پياده ( يكي از آخرين مدل هاي آن در آمريكا ساخته شده كه در جيب جا مي گيرد و وزن آن با باتري حدود 500 گرم است

:ب) سيستم هاي فاصله ياب براي استفاده در تانكها

:ج) سيستم هاي فاصله ياب مناسب براي دفاع ضد هوايي

اولين ليزرهاي كه در فاصله يابي از آن ها استفاده شد ليزرهاي ياقوتي با سوئيچ Q بودند. امروزه فاصله يابهاي ليزري اغلب بر اساس ليزرهاي نئودميم با سوئيچ Q طراحي شده اند. گرچه ليزرهاي CO2 نوع TEA در بعضي موارد ( مثل فاصله ياب تانك ها ) جايگزين جالبي براي ليزرهاي نئودميم است

دومين كاربرد نظامي ليزر در علامت گذاري است. اساس كار علامت گذاري ليزري خيلي ساده است : ليزري كه در يك مكان سوق الجيشي قرار گرفته است هدف را روشن مي سازد به خاطر روشنايي شديد نور هنگامي كه هدف به وسيله يك صافي نوري با نوار باريك مشاهده شود به صورت يك نقطه روشن به نظر خواهد رسيد. سلاح كه ممكن است بمب - موشك - و يا اسلحه منفجر شونده ديگري باشد بوسيله يك سيستم احساسگر مناسب مجهز شده است. در ساده ترين شكل اين احساسگر مي تواند يك عدسي باشد كه تصوير هدف را به

يك آشكارساز نوري ربع دايره اي كه سيستم فرمان حركت سلاح را كنترل مي كند انتقال مي دهد و بنابراين مي تواند آن را به سمت هدف هدايت كند. به اين ترتيب هدف گيري با دقت بسيار زياد امكان پذير است. ( دقت هدف گيري حدود 1 متر از يك فاصله 10 كيلومتري ممكن به نظر مي رسد.) معمولا ليزر از نوع Nd: YAG است. در حالي كه ليزرهاي CO2 به خاطر پيچيدگي آشكارسازهاي نوري ( كه مستلزم استفاده در دماهاي سرمازايي است) نامناسب اند. علامت گذاري ممكن است از هواپيما - هليكوپتر و يا از زمين انجام شود. ( مثلا با استفاده از يك علامت گذار دستي

اكنون كوشش قابل ملاحظه اي هم در آمريكا و هم در روسيه براي ساخت ليزرهايي كه به عنوان سلاحههاي هدايت انرژي به كار مي روند اختصاص يافته است. در مورد سيستم هاي قوي ليزري مورد نظر با توان احتمالا در حدود مگا وات ( حداقل براي چند ده ثانيه ) يك سيستم نوري باريكه ليزر را به هدف ( هواپيما - ماهواره يا موشك ) هدايت مي كند تا خسارت غير قابل جبراني به وسايل احساسگر آن وارد كند و يا اينكه چنان آسيبي به سطح آن وارد كند كه نهايتا در اثر تنش هاي پروازي دچار صدمه شود سيستم هاي ليزر مستقر در زمين به

خاطر اثر معروف به شكوفايي گرمايي كه در جو اتفاق مي افتد فعلا چندان عملي به نظر نمي رسند. جو زمين توسط باريكه ليزر گرم مي شود و اين باعث مي شود كه جو مانند يك عدسي منفي باريكه را واگرا سازد با قرار دادن ليزر در هواپيماي در حال پرواز در ارتفاع بالا و يا در يك سفينه فضايي مي توان از اين مساله اجتناب ورزيد. اطلاعات موجود در اين زمينه ها به علت سري بودن آن ها اغلب ناقص و پراكنده اند. اما به نظر مي رسد كه اين سيستم ها كلا شامل باريكه هايي پيوسته با توان 5 تا 10 مگا وات (براي چند ثانيه ) با يك وسيله هدايت اپتيكي به قطر 5 تا 10 متر باشند مناسب ترين ليزرها براي اينگونه كاربرد ها احتمالا ليزرهاي شيميايي اند ( DF يا HF) . ليزرهاي شيميايي به ويژه براي سيستم هاي مستقر در فضا جالب اند زيرا توسط آن ها مي توان انرژي لازم را به صورت انرژي ذخيره فشرده به شكل انرژي شيميايي تركيب هاي مناسب تامين كرد


واژه لیزر از سر کلمه‌های انگلیسی در عبارت Light Amplification by Stimulated Emission of Radiation به معنی«تقویت نور به روش گسیل القایی تابش» است لیزر به وسیله‌ای گفته می‌شود که نور را به صورت پرتوهای موازی بسیار باریکی که طول موج مشخصی دارند ساطع می‌کنند. این دستگاه از ماده‌ای جمع کننده یا فعال کنده نور تشکیل شده که درون محفظه تشدید نور قرار دارد. این ماده پرتو نور را که به وسیله یک منبع انرزی بیرونی (از نوع الکتریسیته یا نور) به وجود آمده، تقویت می‌کند


مبانی نظری لیزر را آلبرت ایشتین در سال ۱۹۱۶ میلادی طی مقاله‌ای مطرح کرد٫ ولی سال‌های نسبتاً زیادی طول کشید تا صنعث و فناوری امکان ساخت اولین لیزر را فراهم کند. در سال ۱۹۵۳ چارلز تاونز میزر (تقویت‌کننده موج میکروویو) را اختراع کرد و می‌خواست آزمایشات خود زا حول جایگزینی نور مرئی به جای مادون قرمز ادامه دهد و هم‌زمان این امر بین آزمایشگاه‌های مختلف در سراسر جهان به عنوان رقابتی جدی در نظر گرفته شد که عبارت لیزر در همان زمان در مقاله‌ای از گوردون هولد، دانشجوی دکترای دانشگاه کلمبیا، پیشنهاد شد و در سال ۱۹۶۰ اولین لیزر (که با موفقیت کار کرد) توسط تئودور میمن (Theodore H. Maiman) ساخته شد. و اولین لیزر گازی(با استفاده از هلیوم و نئون) هم توسط علی جوان فیزیکدان ایرانی در همان ۱۹۶۰ ساخته شد. نخستین بار طرح اولیه لیزر (میزر) توسط انیشتن داده شد،کار لیزر به این گونه‌است که با تابش یک فوترون به یک ذره (اتم یا مولکول یا یون)برانگیخته یک فوترون دیگر نیز آزاد می‌شود که این دو فوترون با هم همفرکانس می‌باشند در صورت ادامه این روند تعداد نوترونها افزایش می‌یابند که می‌توانند باریکه‌ای از فوتونها را به وجود بیاورند


کاربرد لیزر در پزشکی : چاقوی لیزری ، مته لیزری و...
کاربرد لیزر در صنعت : جوشکاری لیزری ، برشهای لیزری ، برش الماس ، مسافت یاب لیزری و...
کاربردهای نظامی : ردیاب لیزری ، تفنگ لیزری و...
کاربردهای آزمایشگاهی و تحقیقاتی:اندازه گیری ، سنتز مواد و...
انواع ليزر


تقسيم بندی از روی تنوع :
ليزر های حالت جامد، بلوری يا شيشه ای - ليزرهای گازی - ليزرهای نيمرسانا - ليزرهای الکترون آزاد - ليزرهای رزينه ای رنگين - ليزرهای شيميايي - ليزرهای مرکز رنگي - پرتو X
عناصر اساسي ليزر
ابزار ليزريک نوسانگر اپتيکی است که باريکه ی بسيار موازی شده ی شديدی از تابش همدوس را گسيل ميکند.اين ابزار اساسا از 3 عنصر ساخته شده است: چشمه ی انرژی خارجی يا دمنده ، محيط تقويت کننده ، و کاواک اپتيکي يا تشديدگر
دمنده


دمنده يک چشمه ی انرژی خارجی است که وارونی جمعيت را در محيط ليزری به وجود مي آورد. تقويت موج نور يا ميدان تابش فوتون تنها در يک محيط ليزري که در آن واروني جمعيت بين دو تراز انرژی وجود داشته باشد روی مي دهد.(برای اينکه ليزر کار کند لازم است تعداد اتمهای N2 در تراز انرژی E2 از تعداد اتمهای N1 در تراز انرژی E1 بزرگتر باشد.اين وضعيت را واروني جمعيت می نامند.) واروني جمعيت و گسيل القائي با هم در محيط ليزری کار مي کنند و باعث تقويت نور مي شوند. در غير اين وضعيت موج نور عبور کننده از محيط ليزری تضعيف خواهد شد


دمنده ها مي توانند از نوع اپتيکی ، الکتريکی ، شيميايي يا گرمايي باشند به شرط اين که انرژی لازمي را فراهم کنند که بتواند با محيط ليزری برای برانگيختن اتمها و ايجاد واروني جمعيت لازم همراه شود


در ليزر های گازی مانند He-Ne ، دمنده ای که از همه بيشتر به کار مي رود از نوع تخليه ی الکتريکی است. عوامل مهم حاکم بر اين نوع دمش مقطع های برانگيزش الکترونی و طول عمرهای ترازهای انرژی مختلف هستند. در بعضي از ليزرهای گازی ، الکترون های آزادی که در فرايند تخليه توليد شده اند با اتمها ، يونها يا مولکول های ليزر مستقيما برخورد و آنها را برانگيخته مي کنند . در ساير ليزرها ، برانگيزش توسط برخوردهای ناکشسان اتم-اتم ( يا مولکول-مولکول) روی مي دهد
محيط ليزری


محيط تقويت کننده يا محيط ليزری يک قسمت مهم از ابزار ليزر است . بسياری از ليزرها از روی نوع محيط ليزری به کار رفته در آنها نامگذاری می شوند ، بعنوان مثال ، هليم-نئون (He-Ne ) ، دی اکسيدکربن (Co2 ) و نئوديميم : نارسنگ ايتريم آلومينيم (Nd:YAG) . محيط ليزری ، که مي تواند گاز،مايع يا جامد باشد ، طول موج تابش ليزری را تعيين مي کند
مهمترين لازمه ی محيط تقويت کننده توانايي آن برای ايجاد واروني جمعيت بين دو تراز انرژی اتمهای ليزری است.اين وضعيت با برانگيختن ( يا دميدن ) اتمهای بيشتری به تراز انرژی بالاتر نسبت به اتمهای موجود در تراز پايين تر تحقق مي يابد.( چنانکه معلوم شده است ، حتی با دمش قوی ، به علت اختلاف زياد طول عمرهای ترازهای انرژی اتمهای قابل استفاده ، تنها جفت های مشخصي از ترازهای انرژی با طول عمرهای خودبه خودی مناسب را مي توان " وارون " کرد

تشديدگر
يعني يک "ابزار پسخور " اپتيکی که فوتون ها را در محيط ( تقويت کننده ی ) ليزری به جلو و عقب ميراند. اين تشديدگر يا کاواک اپتيکی ، از يک جفت آينه ی تخت يا خميده تشکيل شده است که دقيقا همرديف شده اند و مراکز آنها روی محور اپتيکی دستگاه ليزر قرار دارند. بازتابندگی آينه ی انتهايي بايد تا حد امکان نزديک به 100% باشد. آينه ی ديگر با بازتابندگی اندکی کمتر از 100% انتخاب می شود تا قسمتي از باريکه ی بازتابنده ی داخلی بتواند ، بعنوان باريکه ی ليزری مفيد خروجی ، از آن عبور کند . هندسه ی آيينه ها و فاصله ی آنها تعيين کننده ی ساختار ميدان الکترومغناطيسي داخل کاواک ليزری هستند


مناسب است که تشديدگر ليزری را يک تشديدگر فابری-پرو با چند متغير در نظر بگيريم. در تشديدگر ليزری ، کاواک بطور کلي با آيينه های خميده بجای آيينه های تخت محصور شده است ، و بجای کاواک تهی که مشخصه ی تشديدگر فابری-پرو است کاواک پر (يا تقريبا پر) از ماده ی بهره به کار میرود. با وجود اين ، وضعيت تشديد برای مدهای محوری (يا طولی) برای دو تشديدگر يکسان است


خواص باريکه ی ليزر:
1- نور ليزر تکفام است
2- همدوس است
3- جهت مند است
4- درخشان است.(درخشائیِ يک چشمه ی امواج الکترومغناطيسی عبارت است از توان گسيل شده از واحد سطح چشمه در واحد زاويه فضائی.)
کاربردهای ليزر


1.کاربرد در فيزيک و شيمی
2.کاربرد در زيست شناسی و پزشکی
3.کاربرد در فرآوری مواد
4.کاربردهای صنعتی و الکتريکی
5.کاربرد در اندازه گيری و بازرسی


6.کاربرد در گداخت گرما هسته ای
7.کاربرد فرآوری اطلاعات نوری و ضبط آنها
8.کاربردهای نظامی
9.تمام نگاری (هولوگرافی)
10.کاربرد در ارتباطات نوری .
ارتباط نوري
استفاده از باريكه ليزر براي ارتباط در جو به خاطر دو مزيت مهم اشتياق زيادي برانگيخت :
الف) اولين علت دسترسي به پهناي نوار نوساني بزرگ ليزر است. زيرا مقدار اطلاعات قابل انتقال روي يك موج حامل متناسب با پهناي نوار آن است. فركانس موج حامل از ناحيه ميكروموج بخ ناحيه نور مرئي به اندازه 104 برابر افزايش مي يابد و در نتيجه امكان استفاده از يك پهناي بزرگتر را به ما مي دهد.


ب) علت دوم طول موج كوتاه تابش است. چون طول موج ليزر نوعا حدود 104 مرتبه كوچكتر از امواج ميكرو موج است با قطر روزنه يكسان D واگرايي امواج نوري به اندازه 104 مرتبه نسبت به واگرايي امواج ميكرو موج كوچكتر است. بنابراين براي دستيابي به اين واگرايي آنتن يك سيستم اپتيكي مي تواند به مراتب كوچكتر باشد. اما اين دو امتياز مهم با اين واقعيت خنثي مي شوند كه باريكه نوري تحت شرايط ديد ضعيف در جو به شدت تضعيف مي شود. در نتيجه استفاده از ليزرها در ارتباطات فضاي باز ( هدايت نشده ) فقط در مورد اين موارد توسعه يافته اند :


الف) ارتباطات فضايي بين دو ماهواره و يا بين يك ماهواره و يك ايستگاه زميني كه در يك شرايط جوي مطلوب قرار گرفته است. ليزرهايي كه در اين مورد استفاده مي شوند عبارتند از :
Nd:YAG ( با آهنگ انتقال 109 بيت در ثانيه ) و يا CO2 با آهنگ انتقال 3*108 بيت در ثانيه ). گرچه CO2 نسبت به Nd: YAG داراي بازدهي بالاتري است و لي داراي اين اشكال است كه نياز به سيستم آشكارسازي پيچيده تري دارد و طول موج آن هم به اندازه 10 مرتبه بزرگتر از طول موج Nd : YAG است.


ب) ارتباطات بين دو نقطه در يك مسافت كوتاه مثلا انتقال اطلاعات درون يك ساختمان. براي اين منظور از ليزرهاي نيمرسانا استفاده مي شود.
اما زمينه اصلي مورد توجه در ارتباطات نوري مبتني بر انتقال از طريق تارهاي نوري است. انتقال هدايت شده نور در تارهاي نوري پديده اي است كه از سالها پيش شناخته شده است اما تارهاي نوري اوليه فقط در مسافت هاي خيلي كوتاه مورد استفاده قرار مي گرفتند مثلا كاربرد متعارف آن ها در وسايل پزشكي براي اندوسكوپي است. بنابراين در اواخر سال 1960 تضعيف در بهترين شيشه هاي نوري در حدود 1000 دسي بل بر كيلومتر بود. از آن زمان پيشرفت تكنيكي شيشه و كوارتز باعث تغيير شگفت انگيز در اين عدد شده است به طوري كه اين تضعيف براي كوارتز به 5/0 دسي بل بر كيلومتر رسيده است. اين تضعيف فوق العاده كوچك آينده مهمي را براي كاربرد تارهاي نوري در ارتباطات راه دور نويد مي دهد سيستم

ارتباطات تارهاي نوري نوعا شامل يك چشمه نور يك جفت كننده نوري مناسب براي تزريق نور به تارها و درانتها يك فوتوديود است كه باز هم به تار متصل شده است. تكرار كننده شامل يك گيرنده و يك گسيلنده جديد است. چشمه نور سيستم اغلب ليزرهاي نيمرساناي نا هم پيوندي دوگانه است. اخيرا طول عمر اين ليزرها تا حدود 106 ساعت رسيده است. گرچه تا كنون اغلب از ليزر گاليم ارسنيد GaAs استفاده شده است ولي روش بهتر استفاده از ليزرهاي نا هم پيوندي است كه در آنها لايه فعال تركيبي از آلياژ چهارگانه به صورت In1-x Gax Asy P1-y است. در اين حالت لبه هاي P ,n پيوندگاه از تركيب دوگانه InP تشكيل شده است و با استفاده از تركيب y=2v2x مي توان ترتيبي داد كه چهار آلياژ چهارگانه شبكه اي كه با InP

جور شود با انتخاب صحيح x طول موج تابش را طوري تنظيم كرد كه در اطراف µm 3/1 و يا اطراف 6/1 µm واقع شود كه به ترتيب مربوط به دو مينيموم جذب در تار كوارتز هستند. بسته به قطر d هسته مركزي تار ممكن است از نوع تك مدباشد براي آهنگ انتقال متداول فعلي حدود 50 مگابيت در ثانيه معمولا از تارهاي چند مدي استفاده مي شود. براي آهنگ انتقال هاي بيشتر تارهاي تك مدي مناسبتر به نظر مي رسند. گيرنده معمولا يك فوتوديود بهمني است اگر چه ممكن است از يك ديود PIN و يك ديود تقويت كننده حالت جامد مناسب نيز استفاده كرد.


اندازه گيري و بازرسي
خصوصيات جهتمندي درخشايي و تكفامي ليزر باعث كاربردهاي مفيد زيادي براي اندازه گيري و بازرسي در رشته مهندسي سازه و فرايندهاي صنعتي كنترل ابزار ماشيني شده است. در اين بخش تعيين فاصله بين دو نقطه و بررسي آلودگي را نيز مد نظر قرار مي دهيم
يكي از معمولترين استفاده هاي صنعتي ليزر هم محور كردن است. براي اينكه يك خط مرجع مستقيم براي هم محور كردن ماشين آلات در ساخت هواپيما و نيز در مهندسي سازه براي ساخت بناها پلها و يا تونلها داشته باشيم استفاده از جهتمندي ليزر سودمند است. در اين زمينه ليزر به خوبي جاي وسايل نوري مانند كليماتور و تلسكوپ را گرفته است. معمولا از يك ليزر هليم - نئون با توان كم استفاده مي شود و هم محور كردن عموما به كمك آشكارسازهاي حالت جامد به شكل ربع دايره اي انجام مي شود. محل برخورد باريكه ليزر روي گيرنده با مقدار جريان نوري روي هر ربع دايره معين مي شود. در نتيجه هم محور شدن بستگي به يك اندازه گيري الكتريكي دارد و در نتيجه نيازي به قضاوت بصري آزمايشگر نيست. در عمل دقت رديف شدن از حدود 5µm تا حدود 25µm به دست آمده است.


از ليزر براي اندازه گيري مسافت هم استفاده شده است. روش استفاده از ليزر بستگي به بزرگي طول مورد نظر دارد
براي مسافتهاي كوتاه تا 50 متر روشهاي تداخل سنجي به كار گرفته مي شوند كه در آن ها از يك ليزر هليم - نئون پايدار شده فركانسي به عنوان منبع نور استفاده مي شود. براي مسافتهاي متوسط تا حدود 1 كيلومتر روشهاي تله متري شامل مدوله سازي دامنه به كار گرفته مي شود. براي مسافت هاي طولاني تر مي توان زمان در راه بودن تپ نوري را كه از ليزر گسيل شده است و از جسمي بازتابيده مي شود اندازه گيري كرد.


در اندازه گيري تداخل سنجي مسافت از تداخل سنج مايكلسون استفاده مي شود. باريكه ليزر به وسيله يك تقسيم كننده نور به يك باريكه اندازه گيري و يك باريكه مرجع تقسيم مي شود باريكه مرجع با يك آينه ثابت بازتابيده مي شود در حالي كه باريكه اندازه گيري از آينه اي كه به جسم مورد اندازه گيري متصل شده است بازتاب پيدا مي كند. سپس دو باريكه بازتابيده مجددا با يكديگر تركيب مي شوند به طوري كه با هم تداخل مي كنند و دامنه تركيبي آن ها با يك آشكار ساز اندازه گيري مي شود. هنگامي كه محل جسم در جهت باريكه به

اندازه نصف طول موج ليزر تغيير كند سيگنال تداخل از يك ماكزيموم به يك مينيموم مي رسد و سپس دوباره ماكزيموم مي شود. بنابراين يك سيستم الكترونيكي شمارش فريزها مي تواند اطلاعات مربوط به جابجايي جسم را به دست دهد. اين روش اندازه گيري معمولا در كارگاههاي ماشين تراش دقيق مورد استفاده قرار مي گيرد و امكان اندازه گيري طول با دقت يك در ميليون را مي دهد. بايد يادآوري كرد كه در اين روش فقط مي توان فاصله را نسبت به يك مبدا اندازه گيري كرد. برتري اين روش در سرعت دقت و انطباق با سيستم هاي كنترل خودكار است.
براي فاصله هاي بزرگتر از روش تله متري مدوله سازي دامنه استفاده مي شود و فاصله روي اختلاف فاز بين دو باريكه ليزر مدوله مي شود و فاصله از روي اختلاف فار بين دو باريكه گسيل شده و بازتابيده معين مي شود. باز هم دقت يك در ميليون است. از اين روش در مساحي زمين و نقشه كشي استفاده مي شود. براي فواصل طولاني تر از 1 كيلومتر فاصله با اندازه گيري زمان پرواز يك تپ كوتاه ليزري گسيل شده از ليزر ياقوت و يا ليزر CO2 انجام مي گيرد. اين كاربردها اغلب اهميت نظامي دارند و در بخشي جداگانه بحث خواهد شد كاربردهاي غير نظامي مانند اندازه گيري فاصله بين ماه و زمين با دقتي حدود 20 سانتي متر و تعيين برد ماهواره ها هم قابل ذكر است.


درجه بالاي تكفامي ليزر امكان استفاده از آن را براي اندازه گيري سرعت مايعات و جامدات به روش سرعت سنجي دوپلري فراهم مي سازد. در مورد مايعات مي توان باريكه ليزر را به مايع تابانده و سپس نور پراكنده شده از آن را بررسي كرد. چون مايع روان است فركانس نور پراكنده شده به خاطر اثر دوپلر كمي با فركانس نور فرودي تفاوت دارد. اين تغيير فركانس متناسب با سرعت مايع است. بنابراين با مشاهده سيگنال زنش بين دو پرتو نور پراكنده شده و نور فرودي در يك آشكار ساز مي توان سرعت مايع را اندازه گيري بدون تماس انجام مي شود. و نيز به خاطر تكفامي بالاي نور ليزر براي برد وسيعي از سرعتها خيلي دقيق است.


يكي از سرعت سنجهاي خاص ليزر اندازه گيري سرعت زاويه اي است. وسيله اي كه براي اين منظور طراحي شده است ژيروسكوپ ليزريناميده مي شود و شامل ليزري است كه كاواك آن به شكل حلقه اي است كه از سه آينه به جاي دو آينه معمول استفاده مي شود. اين ليزر مي تواند نوسان مربوط به انتشار نور را هم در جهت عقربه ساعت و هم در خلاف آن به دور حلقه تامين كند. فركانسهاي تشديدي مربوط به هر دو جهت انتشار را مي توان با استفاده از اين شرط كه طول تشديد كننده ( حلقه اي ) برابر مضرب صحيحي از طول موج باشد به دست آورد. اگر حلقه در حال چرخش باشد در مدت زماني كه لازم است نور يك دور كامل بزند زاويه آينه هاي تشديد كننده به اندازه يك مقدار خيلي كوچك ولي محدود حركت خواهد كرد. طول موثر براي باريكه اي در همان جهت چرخش تشديد كننده مي چرخد كمي بيشتر از باريكه اي است كه در جهت عكس مي چرخد. در نتيجه فركانس هاي دو باريكه اي كه در خلاف جهت يكديگر مي چرخند كمي تفاوت دارد و اختلاف اين فركانسهاي متناسب با سرعت زاويه اي تشديد كننده است . با ايجاد تپش بين دو باريكه مي توان سرعت زاويه اي را اندازه گيري كرد. ژيروسكوپ ليزري امكان اندازه گيري با دقتي را فراهم مي كند كه قابل مقايسه با دقت پيچيده ترين و گرانترين ژيروسكوپ هاي معمولي است.


كاربرد مصرفي ديگر و يا به عبارت بهتر كاربرد مصرفي واقعي عبارت از ديسك ويدئويي و ديسك صوتي است. يك ديسك ويدئو حامل يك برنامه ويدئويي ضبط شده است كه مي توان آن را بر روي دستگاه تلويزيون معمولي نمايش داد. سازندگان ديسك ويدئويي اطلاعات را با استفاده از يك سابنده روي آن ضبط مي كنند كه اين اطلاعات به وسيله ليزر خوانده مي شود. يك روش معمول ضبط شامل برشهاي شياري با طول ها و فاصله هاي مختلف است عمق اين شيارها 4/1 طول موج ليزري است كه از آن در فرايند خواندن استفاده مي شود. در موقع خواندن باريكه ليزر طوري كانوني مي شود كه فقط بر روي يك شيار بيفتد. هنگامي كه شيار در مسير لكه باريكه ليزر واقغ شود بازتاب به خاطر تداخل ويرانگر بين نور بازتابيده از ديوارهاي شيار و به آن كاهش پيدا مي كند. به عكس نبودن شيار باعث يك بازتاب قوي مي شود. بدين طريق مي توان اطلاعات تلويزيوني را به صورت رقمي ضبط كرد.


كاربرد ديگر ليزرها نوشتن و خواندن اطلاعات در حافظه نوري در كامپيوترهاست لطف اي حافظه نوري هم در توان دسترسي به چگالي اطلاعات حدود مرتبه طول موج است. تكنيك ضبط عبارت است از ايجاد سوراخ هاي كوچكي در يك ماده مات يا نوعي تغيير خصوصيت عبور و بازتاب ماده زير لايه كه با استفاده از ليزرهاي با توان كافي حاصل مي شود. و حتي مي تواند فيلم عكاسي باشد. اما هيچ يك از اين زير لايه ها را نمي توان پاك كرد. حلقه هاي قابل پاك كردن بر اساس گرما مغناطيسي فروالكتريك و فوتوكروميك ساخته شده اند. همچنين حافظه هاي نوري با استفاده از تكنيك تمام نگاري نيز طراحي شده اند. نتيجتا اگر چه از لحاظ فني امكان ساخت حافظه هاي نوري به وجود آمده است ولي ارزش اقتصادي آن ها هنوز جاي بحث دارد.


آخرين كاربردي كه در اين بخش اشاره مي كنيم گرافيك ليزري است. در اين تكنيك ابتدا باريكه ليزر بوسيله يك سيستم مناسب روبشگر بر روي يك صفحه حساس به نور كانوني مي شود و در حالي كه شدت ليزر به طور همزمان با روبش از نظر دامنه مدوله مي شود به طوري كه بتوان آن را بوسيله كامپيوتر توليد كرد.( مانند سيستم هاي چاپ كامپيوتري بدون تماس ) و يا آنها را به صورت سيگنال الكتريكي از يك ايستگاه دور دريافت كرد( مانند پست تصويري). در مورد اخير مي توان سيگنال را به وسيله يك يك سيستم خواننده مناسب با كمك ليزر توليد كرد. وسيله خواندن در ايستگاه دور شامل ليزر با توان كم است كه باريكه كانوني شده آن صفحه اي راكه بايد خوانده شود مي روبد. يك آشكارساز نوري باريكه پراكنده از نواحي تاريك و روشن روي صفحه را كنترل مي كند و آن را به سيگنال الكتريكي تبديل مي كند. سيستم هاي ليزري رونوشت اكنون به طور وسيعي توسط بسياري از ناشران روزنامه ها براي انتقال رونوشت صفحات روزنامه به كار برده مي شود


تمام نگاري
تمام نگاري ( هولوگرافي http://www.holographer.org/ ) يك تكنيك انقلابي است كه عكسبرداري سه بعدي (يعني كامل ) از يك جسم و يا يك صحنه را ممكن مي كند. اين تكنيك در سال 1948 توسط گابور ابداع شد ( در آن زمان به منظور بهتر كرده توان تفكيك ميكروسكوپ الكتروني پيشنهاد شد) و به صورت يك پيشنهاد عملي در آمدو اما قابليت واقعي اين تكنيك پس از اختراع ليزر نشان داده شد.


اساس تمام نگاري به اين صورت است كه باريكه ليزر بوسيله آينه كه قسمتي از نور را عبور مي دهد به دو باريكه ( بازتابيده و عبوري) تقسيم مي شوند. باريكه بازتابيده مستقيما به صفحه حساس به نور برخورد مي كند در حالي كه باريكه عبوري جسمي را كه بايد تمام نگاري شود روشن مي كند. به اين ترتيب قسمتي از نوري كه از جسم پراكنده شده هم روي صفحه حساس ( فيلم ) مي افتد. به علت همدوس بودن باريكه ها يك نقش تداخلي از تركيب دو باريكه روي صفحه تشكيل مي شود حالا اگر اين فيلم ظاهر شود و تحت بزرگنمايي

كافي بررسي شود مي توان اين فريزهاي تداخلي را مشاهده كرد. فاصله بين دو فريز تاريك متوالي معمولا حدود 1 ميكرومتر است. اين نقش تداخلي پيچيده است و هنگامي كه صفحه را به وسيله چشم بررسي مي كنيم به نظر نمي رسد كه حامل تصوير مشابه با جسم اوليه باشد اما اين فريزهاي تداخلي در واقع حامل ضبط كاملي از جسم اوليه است.
حال فرض كنيد كه صفحه ظاهر شده را دوباره به محلي كه در معرض نور قرار داشت بازگردانيم و جسم تحت مطالعه را برداربم باريكه بازتابيده اكنون با فريزهاي روي صفحه برهمكنش مي كنند و دوباره در پشت صفحه يك باريكه پراشيده ايجاد مي كندبنابراين ناظري كه به صفحه نگاه مي كند جسم را در پشت صفحه مي بيند طوري كه انگار هنوز هم جسم در آنجاست.


يكي از جالبترين خصوصيات تمام نگاري اين است كه جسم بازسازي شده رفتار سه بعدي نشان مي دهد بنابراين با حركت دادن چشم از محل تماشا مي توان طرف ديگر جسم را مشاهده كرد. توجه كنيد كه براي ضبط تمام نگار بايد سه شرط اصلي را براورد: الف) درجه همدوسي نور ليزر بايد به اندازه كافي باشد تا فريزهاي تداخلي در روي صفحه تشكيل شود. ب) وضعيت نسبي جسم - صفحه و باريكه ليزر نبايد در هنگام تاباندن نور به صفحه كه حدود چند ثانيه طول مي شكد تغيير كند در واقع تغيير محل نسبي بايد كمتر از نصف طول موج ليزر باشد تا از درهم شدن نقش تداخلي جلوگيري كند. ج) قدرت تفكيك صفحه عكاسي بايد به اندازه كافي زياد باشد تا بتواند فريزهاي تداخلي را ضبط كند.


تمام نگاري به عنوان يك تكنيك ضبط و بازسازي تصوير سه بعدي بيشترين موفقيت را تاكنون در كاربردهاي هنري داشته است تا در كاربردهاي علمي . اما بر اساس تمام نگاري از يك تكنيك تداخل سنجي تمام نگاشتي در كاربردهاي علمي به عنوان وسيله اي براي ضبط و اندازه گيري واكنشها و ارتعاشات اجسام سه بعدي استفاده شده است.
کاربرد ليزر در بيماريهای پوستی و زيبائی :


انواع مختلف ليزر در درمان بيماريهای پوستی و زيبائی کاربرد دارد که بطور اختصار شامل:
۱- درمان ضايعات و خالهای عروقی که رنگ اينها معمولاْ قرمز می باشد که شامل: رگ های واريسی، رگهای قرمز زير پوستی که معمولاْ روی صورت و در اثر آفتاب سوختگی مکرر و يا به هر دليلی که پوست نازک شده باشد بوجود می آيند، ماه گرفتگی، آنژيوم عنکبوتی، گرانولوم پيوژنيکوم و غيره ... در اين بيماريها نقطه هدف پرتو ليزر هموگلوبين می باشد که در گلبولهای قرمز وجود دارد.


۲- درمان انواع ضايعات رنگی و رنگدانه ای پوست که شامل: خال و خالکوبی. در اينجا نقطه هدف پرتو ليزر ملانين و رنگ های خالکوبی می باشد.
۳- درمان و کاهش موهای زائد و نا خواسته. در اينجا نيز نقطه هدف ملانين است که در ساقه و ريشه مو وجود دارد. پس موهای رنگ روسن و سفيد که فاقد ملانين هستند با ليزر از بين نمی رود و نياز به درمان های ديگر مثل الکتروليز دارند.
۴- کاهش چين و چروک، فرورفتگی ها و جای زخم و جوش


۵- درمان بعضی بيماريهای پوستی مانند: زگيل، کلوئيد يا گوشت اضافه، ترک های پوستی ناشی از حاملگی و چاقی و ترميم زخم، داءصدف، پيسی و غيره ...
۶- گاهی از ليزر برای برش بافت و يا برش در مواقع جراحی مشابه تيغ جراحی استفاده ميکنند. در روش ليزر خونريزی کمتر است.
بايد توجه داشت که روش های ديگری نيز بجز ليزر برای درمان بيماری های پوستی و زيبائی وجود دارد که کم هزينه تر هستند. بنابراين در صورت عدم موفقيت ساير روش ها؛ می توان نتايج ليزر را هم امتحان کرد.


استفاده از ليزر در هوانوردي و دريانوردي :
يكي از بديعيترين وسايل ليزري ، ژيروسكوپ ليزري است . ژيروسكوپ معمولي اساساً چرخ دواري است كه بسرعت مي‌چرخد . به دليل اين چرخش ، محور چرخ همواره در يك صفحه باقي مي‌ماند . محور ژيروسكوپ چرخنده هميشه در يك راستا باقي مي‌ماند و تغيير مسير كشتي تأثيري بر آن ندارد . اين محور ، كار يك ((خط مبنا)) را انجام مي‌دهد كه تغييرات جهت كشتي را از روي آن مي‌توان تشخيص داد . سفينه‌هاي فضايي كه غالباً بي‌سرنشينند تنها به كمك ژيروسكوپ مسير خود را حفظ مي‌كنند . اين ژيروسكوپ متشكل است از يك ليزر گازي مثلاً ليزر هليوم ، نئون كه از هر دو انتهايش نور همدوس خارج مي‌شود . با نصب اين ژيروسكوپ به سفينه فضايي ، انحراف سفينه از مسير ، قابل تشخيص است .


نور ليزر براي روشنايي :
ليزرهاي حالت جامد و ليزرهاي تزريقي درخشهاي كوتاه بسيار روشني توليد مي‌كند كه براي عكسبرداري بسيار سريع ، ايده‌آل است . ما در عصري هستيم كه سالانه ميليونها پوند صرف ساختن هوانوردهاي سريع ـ اعم از موشك‌هاي بالستيكي ، قاره‌پيما يا هواپيما مي‌شود . بايد دانست كه سرعتهاي زياد چه بر سر اجسام متحرك مي‌آيد و يكي از بهترين راههاي اين كار عكسبرداري از جسم در حال حركت است . سرعت بعضي از پرتابه‌ها بقدري زياد است كه اغلب چندين كيلومتر در ثانيه كه حتي عكسي كه به كمك سريعترين فلاشهاي متداول از آنها گرفته مي‌شود ، چيزي جز تصويري محو نيست . از آنجايي كه حتي سريعترين پرتابه‌ها هم در اين مدت فاصله بسيار كمي را خواهند پيمود ، عكسي كه با درخشش ليزري از اجسام تيز پرواز گرفته مي‌شود ، واضح و دقيق خواهد بود . ارتش آمريكا سرگرم آزمايش با تلويزيون ليزري براي استفاده در گشتهاي شبانه مخفي با هواپيماست و طراحان نظامي درصدد ساختن كلاهك بمب‌هايي هستند كه هدف را با استفاده از پرتو ليزري نامرئي مادون قرمز پيدا كنند .


سلاحهاي ليزري و نحوه مقابله با سلاحهاي ليزري :
غير قابل اجتناب است كه ميدان جنگ ليزري به طور محسوسي سالهاي آينده جنگ را تهديد نكند . اين نتيجه نه تنها توسعه و استفاده از سلاحهاي ليزري مفيد است بلكه نتيجه شمار فزاينده‌اي از وسائل ليزري از قبيل مسافت‌ياب و هدف‌ياب مي‌باشد . بنابراين در نيروهاي مسلح لازم است كه از حساسه‌ها و توسط اقدامات عامل و غير عامل الكترومغناطيسي حفاظت شود . تهديد اوليه ليزري از خود سلاحهاي ليزري بوجود مي‌آيد . نگهداري و نحوه مقابله با سلاحهاي ليزري مسائل مشكلي است كه تاكنون حل نشده باقي مانده‌اند .
کاربرد لیزر در ارتباطات :


در 1880 الكساندر گراهام بل فكري را كه به عنوان طريق جديد در ارتباطات در ذهن خود داشت به مورد آزمايش گذاشت. تلفني را كه او چهار سال قبل اختراع كرده بود، از تپ‌ها الكتريسيته استفاده مي‌كرد كه براي انتقال صداي انسان در فواصل دور از سيم‌هاي مسي مي‌گذشتند. وسيله‌ي جديد او از باريكه‌ي نور خورشيد كه در هوا حركت مي‌كند بهره مي‌گرفت تا صدا را از محلي به محل ديگر انتقال دهد.


چاپگرهای لیزری :
در چاپگرهاي ليزري، براي تشكيل تصاوير حروف الفبا و ساير علامت‌ها روي استوانه‌ي گردان از ليزرهاي كم‌توان استفاده مي‌كنند. گرد جوهرمانند خشكي، به تصاوير كشيده شده روي استوانه مي‌چسبد، كه بعد براي چاپ نوشته‌ي مورد نظر روي كاغذ انتقال مي‌يابد.
چاپگرهاي ليزري از ساير چاپگرها بي‌صداترند و مي‌توانند متجاوز از 1300 خط را در دقيقه يا 10000 ورقه‌ي كاغذ با اندازه‌ي حروف را در يك ساعت چاپ كنند. كيفيت حروف چاپي خيلي عالي‌تر از چاپگرها با ماتريس نقطه‌اي است و خيلي شبيه به كيفيت حروفي است كه جداگانه روي كاغذ با كيفيت عالي چاپ شده باشند.
ليزر يك نوع نور برانگيخته شده و پرانرژي است كه در شرايط عادي در طبيعت ديده نمي شود ولي با تكنولوژي و وسايل خاص مي توان آن را ايجاد كرد. ليزر با نور معمولي تفاوتهايي دارد كه اين ويژگيها باعث توانايي و كاربردهاي خاص ليزر مي شود.


به گزارش خبرگزاري دانشجويان ايران واحد علوم پزشكي تهران كاربرد ليزر در پزشكي و از جمله بيماري هاي پوستي از حدود 40 سال پيش به صورت تحقيقاتي شروع شده و با آمدن دستگاههاي جديدتر كه مؤثرتر و كم عارضه تر هستند جايگاه ويژه و وسيعي در درمان بيماري ها، پيدا كرده است.
مكانيسم اثر ليزر جذب انرژي نوراني توسط مولكول هاي بافتي است. همانطوري كه در اثر تابش نور خورشيد اشياء به تدريج گرم مي شوند، تابش ليزر نيز باعث گرم شدن، داغ شدن و نهايتاً تخريب بعضي مولكولهاي حساس بافتي مي شود.


از آنجايي كه ليزر تك طول موج مي باشد، فقط باعث داغ شدن و تخريب ساختمان هاي خاصي مي شود. درحالي كه افزايش حرارت در ساختمان هاي مجاور كه حساس نيستند زياد قابل توجه نمي باشد. لذا با انتخاب ليزر مناسب و با دانستن ويژگيهاي بافتي مي توان ضايعه موردنظر را تخريب كرد در حالي كه كمترين صدمه ممكن به ساختمان هاي مجاور آن وارد شود. به طور مثال ليزري كه طول موج حدود 585 نانومتر مي باشد (Pulse dye Laser) بيشتر روي ساختمان عروقي اثر مي كند. لذا در مورد عروق واريسي پوست، ضايعات همانژيومي و لكه ها و خال هاي عروقي به كار مي رود.


انواع دستگاه هاي ليزر و كاربرد آنها
براي درمان ضايعات عروقي كه شامل رگ هاي واريسي پوست (درصورت، اندام ها و بدن)، لكه هاي قرمز عروقي و خال هاي عروقي (ماه گرفتگي هاي قرمز) و بعضي تومورهاي عروقي (گرانولوم پيوژنيكوم) مي باشد، ليزرهاي (Pulse dye laser)P.D.L، Nd-YAG، آرگون قابل استفاده هستند كه P.D.L مناسب تر مي باشد.
براي درمان خال ها و لكه هاي تيره پوستي (ماه گرفتگي آبي و يا قهوه اي)، خالكوبي ها (آبي، سياه، گاهي قرمز) از انواع اين ليزرها مي توان استفاده كرد:
Q- Switch Ruby, Q- Switch Alexandrite, Q- Switch Nd-YAG


براي درمان و كاهش موهاي ناخواسته نيز از انواع ليزرهاي Ruby laser، Alexandrite، Diode، Nd-YAG مي توان استفاده نمود.
همچنين يك سيستم جديد به نام (I.P.L) Intense Pulse Light كه نور پرانرژي معمولي است و از جنس ليزر نمي باشد در كاهش موهاي ناخواسته مؤثر است اما تأثير ليزر در كاستن موهاي زائد، دائمي نمي باشد.
براي كاهش چين و چروك و فرورفتگي هاي جاي زخم آكنه و ساير بيماري ها مي توان از ليزرهاي CO2 و Erbium YAG استفاده كرد.
ليزر CO2 پوست را عميق تر مي تراشد و دركاهش چين و چروك مؤثرتر است ولي عوارض آن از جمله ايجاد جاي زخم و لكه هاي تيره شايع تر مي باشد لذا براي كاهش عوارض ناخواسته، Erbium YAG مناسب تر است. نتيجه اين ليزرها هيچكدام صددرصد نمي باشد ولي دركاهش عمق چين و چروك و زخم ها مؤثر هستند.
انواع مختلف ليزر در درمان بيماريهاي مختلف پوستي كاربرد دارند ولي بايد توجه داشت كه براي اين بيماري ها، درمان ها و روش هاي ديگر و ارزان تر نيز وجود دارند، لذا درصورت عدم موفقيت ساير روش ها مي توان نتايج ليزر را نيز امتحان كرد.


استفاده از لیزر در پزشکی
ليزر به عنوان يك منبع قوي انرژي، در پزشكي نيز به كار گرفته شده است. بخصوص در آمريكا كه زادگاه ليزر بوده و هنوز هم موطن آن است. به عقيده‌ي برخي جراحان، ليزر براي بريدن اعضايي كه رگ‌هاي خوني بسيار پيچيده دارد مانند مغز، فوق العاده مناسب است. تابه‌ي ليزر در حين قطع كردن رگ‌هاي خوني، يا سوزاندن، دهانه‌ي آنها را مي‌بندد. از آنجا كه جراحان معمولاً وقت زيادي را صرف بستن يا گره زدن مويرگ‌ها مي‌كنند و هميشه سعي بر اين است كه زمان جراحي را حتي الامكان كوتاه‌تر كرد، اين كاربرد ليزر بسيار مهم است.


يكي از جراحان لندن امكان پاك كردن جرم شريان‌هاي اكليلي (شريان‌هايي كه خون را به ماهيچه‌هاي قلب مي‌رساند) را با استفاده از هدايت نور ليزر به وسيله الياف شيشه‌اي بررسي كرد. اين روش ممكن است سودمند باشد، گرچه هنوز در عمل پياده نشده است. پزشكان همچنين كوشيده‌اند كه از ليزر براي سوزاندن سلول‌هاي سرطاني استفاده كنند، خصوصاً در ملانوما (تومورهاي بدخيمي كه از رشد رنگدانه‌ها ايجاد مي‌شود. رنگدانه‌ها بيش از بافت‌هاي سالم ديگر، نور را جذب مي‌كنند. به ادعاي برخي از پزشكان، نتايج اميدوار كننده‌اي از كاربرد ليزر در اين زمينه حاصل شده است.


از كاربرد ليزر در پزشكي، بيش از چند سال نمي‌گذرد و در مورد سرطان، نكته بريدن تومور نيست. بلكه اين است كه آيا مي‌توان آن‌را چنان ريشه‌كن كرد كه امكان ظهور مجددش نباشد و درعين حال چندان آسيبي هم به بافت‌هاي سالم وارد نشود. چون از شروع درمان سرطان با ليزر، زمان نسبتاً كوتاهي مي‌گذرد، هنوز زود است كه در مورد كارآيي اين روش، در مقايسه با ساير روش‌هاي متداول از قبيل عمل جراحي يا راديوتراپي، قضاوت شود. برخي از پزشكان هم‌اكنون مدعي‌اند كه با تابش مستقيم نور ليزر به بافت بدخيم ممكن است بعضي از ياخته‌هاي سرطاني بي‌آنكه از بين بروند، به اطراف پراكنده شوند و به اين ترتيب زمينه‌ي بازگشت شديدتر بيماري، فراهم آيد. ليزر ممكن است جاي خود را در جراحي و درمان سرطان باز كند، اما شايد كارآيي‌اش محدودتر از آن باشد كه گهگاه ادعا مي‌شود . نخستین لیزر طبی به نام Robust که در قالب یک ماشین ثابت با حجمی سنگین و در اندازه‌ای بزرگ طراحی شده بود در درمانهای جراحی مورد استفاده قرار گرفت.


پس از آن جهان طب شاهد تکامل سریع و غیر منتظره در تولید انواع لیزر طبی و ارائه شدن نسلهای مختلف لیزر به جامعه پزشکی بوده به رغم اشکال متنوع و چند کاره بودن دستگاه لیزر در حوزه‌های مختلف پزشکی یک اصل اساسی از ابتدا تا کنون هرگز تغییر نکرده و آن بکار گیری بهینه از انرژی حاصل از لیزر در حوزه‌های مختلف علمی ، پزشکی ، جراحی و زیباسازی پوست می‌باشد.
استفاده از لیزر در درمان بیماریها


• کاربرد در درماتولوزی: درمان سوختگیها و زخمهای مقاوم به درمان آکنه ، اگزما ، پسوریاسیس ، ضایعات و اقدامات پیشگیرانه مثل جلوگیری از پیر شدن پوست توسط لیزر امکان پذیر شده است.
• بیماریهای عضلانی - اسکلتی و ارتوپدی: در درمان کشیدگیهای تاندونی آرتریت روماتوئید ، رفع اختلالات موجود در اتصالات عضلانی کمر دردها و کشیدگیها بکار می‌رود.
• بیماریهای دهان و دندان: درمان پوسیدگیهای دندانی پریودنتیتها بیماریهای مخاط دهان اختلالات جویدن و … توسط لیزر صورت می‌پذیرد.
• در حوزه عصبی:درمان سردردها و میگرن توسط لیزر امکان پذیر می‌باشد.


• بیماریهای عروقی:درمان واریسهای وریدی ضایعات عروقی حاصله از بدو تولد و … .
انواع ليزرهاي پزشکي کم توان يا Low Out Put Lasers
انواع معمول ليزرهاي درماني و طول موج آنها
• He Ne Laser (633nm)
• InGa Al P Laser (633-635 nm)


• Ga Al As Laser (780-830 nm)
• Ga As Laser (904 nm)

ليزر هليوم - نئون (He – Ne )


قديمي ترين نوع ليزر براي استفاده در LLLT بوده که شامل يک تيوب ليزر بزرگ شيشه اي حاوي مخلوطي از گاز با فشار پايين است که به منبع ولتاژ بالا متصل مي باشد و نور مرئي با طول موج 633 nm از خود ساطع ميکند. اين نوع ليزر عموماً نور پيوسته دارد ولي مي تواند با وسايلي به حالت پالسي نيز تابش نمايد که در اين صورت نصف قدرت آن از بين مي رود. ( اگرduty cycle آن 50% باشد ). خروجي طبيعي آن 1 – 10 mw بطور مستقيم و يااز طريق فيبر نوري به موضع درمان ميرسد. ليزرهاي هليوم – نئون بخاطر تيوب شيشه اي آن معمولاً شکننده و بزرگ مي باشند. تيوب هاي ليزري نيز وجود دارند که به خوبي با مواد خاصي محافظت شده اند ولي اندازه آن هنوز هم مشکل ساز است.


در وسايل درماني نور ليزر هليوم – نئون بايد با فيبر نوري هدايت شود. اتلاف نور در اين وسايل هدايتي هم 20 تا 50 % بسته به نوع آن مي باشد. هدايت کننده هاي با کيفيت خوب وجود دارند ولي قيمتي نسبتاً گران دارند. پس همانطور که مي بينيم ليزرهاي هليوم-نئون داراي معايبي هستند.


عمق نفوذ مفيد ليزر هليم – نئون بين 8-6 ميلي متر در توان 3.5 ميلي وات و 10- 8 ميلي متر در توان 7 ميلي وات (در حالتي که پروب را به پوست بچسبانيم) مي باشد.

ليزر اينديوم – گاليم - آلومينيوم – فسفايد (In Ga Al P )
اينها ليزرهاي نيمه هادي هستند که کريستال آنها داراي گاليوم، اينديوم و فسفر مي باشند و نزديک به ليزرهاي Ga Al As هستند و طول موج 630 – 685nm از خود ساطع مي کنند. نوع کوچک آن (معمولاً 1 ميلي وات ) ليزر In Ga Al P ( يا به عبارت ديگر Ga Al In P ) که با طول موج 650 – 670 nm کار مي کنند و اغلب در نشانگر هاي سخنرانان براي نشاندادن چيزي روي پرده استفاده ميشود. با توسعه اين نوع ليزر کم کم ليزرهاي هليوم نئون با اين نوع ليزرها جايگزين مي شوند چون سبکتر ، ارزانتر و کوچکتر وراحت تر هستند ونگهداري آنها هم آسانتر است و داراي يک تيوب گازي حساس هم نيستند. فقط بايد بخاطر داشت که نور ديودهاي ليزر داراي همدوسي کمتري نسبت به ليزرهاي گازي است و از نظر فيزيکي ممکن است آثار بيولوژيکي آنها متفاوت با آنچه انتظار داريم باشد.


ليزرهاي گاليوم آلومينيوم آرسنايد (Ga Al As)
اين نوع ليزر تقريباً تمام خانواده ليزرهاي نيمه هادي را در بر مي گيرد. طول موج ميتواند در محدوده 870 – 880nm انتخاب شود ولي در محدوده درماني معمولاً بين 820 و 830 نانو متر که غير قابل ديدن است و درست در طيف مادون قرمز قرار دارد مي باشد. ( اگر کسي پيدا شد که مستقيماً به درون اين نوع ديود ليزر روشن نگاه کند تا کور نشده ميتواند يک نقطه قرمز بسيار مطبوع را مشاهده نمايد.)


اين نوع ليزرها عمل پيوسته دارند يا Continuous هستند ولي مي توانند بصورت پالسي هم وجود داشته باشند اما اين پالس super pulse نيست ولي سويچ شده مي باشد يعني نصف قدرت خروجي ( 50 % duty cycle ) مي تواند خروجي متوسط داشته باشد ويا قدرت آنرا اگر بخواهيم شبيه Continuous تصور کنيم بايد قدرت اسمي آن را تقسيم بر دو کنيم . عمق نفوذ آنها 3 – 2 سانتي متر است.


از دهه 1990 اين نوع ليزر بخاطر راه اندازي راحت و قابل حمل بودن آنها و کوچک بودن محبوبيت خاصي پيدا کرده است. ليزرهاي Ga Al As نيز در بازار پيدا مي شوند که قدرت حدود 1000 ميلي وات داشته باشند.اخطاري جدي را بايد مد نظر داشت که با اين چنين قدرتهايي خطر آسيب چشمي حتماً وجود دارد. يک راه جلوگيري از اين خطرات استفاده ازآن نوع ليزرهاي Ga Al As است که فقط در تماس با پوست يا بافت روشن شوند. خيلي از ليزرهاي Ga Al As داراي طراحي خوب قابل حمل و قابل استريل هستند. Out put menter يا قدرت سنج ضروري است چون نور اين ليزر قابل ديدن نيست . قيمت اين نوع ليزر که در حدود30 ميلي وات قدرت داشته باشد بين 1000 تا 5000 دلار است تفاوت قيمت بستگي به فاکتورهايي از قبيل قدرت خروجي ، خوش دست بودن ، استاندارد بهداشتي و دوز سنج الکترونيک آن دارد.


در سال هاي اخير ليزرهاي Ga Al As با قدرت هاي 500 تا 1000 ميلي وات در بازار يافت ميشود که قيمت آنها 4000 تا 8000 آمريکا مي باشد. اين ليزرهاحفاظت خاصي را براي چشم لازم دارند وبخصوص در قسمتهاي مودار و تيره حرارت قابل توجهي ايجاد مينمايند.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید