دانلود مقاله نظریه اعداد

word قابل ویرایش
43 صفحه
9700 تومان
97,000 ریال – خرید و دانلود

نظریه اعداد

بعد از دوران یونان باستان، نظریه اعداد در سده شانزدهم و هفدهم با زحمات ویت Viete، باشه دو مزیریاک Bachet de Meziriac، و بخصوص فرما دوباره مورد توجه قرار گرفت. در قرن هجدهم اویلر و لاگرانژ به قضیه پرداختند و در همین مواقع لوژاندرLegendre (1798)و گاوسGauss (1801) به آن تعبیر علمی بخشیدند. در ۱۸۰۱ گاوس در مقاله Disquisitiones Arithmeticæ حساب نظریه اعداد مدرن را پایه گذاری کرد.

چبیشف Chebyshev (1850) کران‌هایی برای تعداد اعداد اول بین یک بازه ارائه داد. ریمانRiemann (۱۸۵۹) اظهار کرد که حد تعداد اعداد اول از یک عدد داده شده تجاوز نمی‌کند. (قضیه عدد اول) و آنالیز مختلط را در تئوری تابع زتای ریمان Riemann zeta functionگنجاند. و فرمول صریح تئوری اعداد اولexplicit formulae of prime number theory را از صفرهای آن نتیجه گرفت. تئوری همنهشتی congruences از Disquisitiones گاوس شروع شد. او علامت‌گذاری زیر را پیشنهاد کرد: mod(c)

چبیشف در سال ۱۸۴۷ به زبان روسی کاری را در این زمینه منتشر کرد و سره Serret آن را در فرانسه عمومی کرد. بجای خلاصه کردن کارهای قبلی، لوژاندر قانون تقابل درجهٔ دوم را گذاشت. این قانون از استقراء کشف شد و قبلاً اویلر آن را مطرح کرده بود. لوژاندر در کتاب تئوری اعداد Théorie des Nombres (1798) برای حالت‌های خاص آن را ثابت کرد. جدا از

کارهای اویلر و لوژاندر، گاوس این قانون را در سال ۱۷۹۵ کشف کرد و اولین کسی بود که یک اثبات کلی ارائه داد. کوشی Cauchy؛ دیریشله Dirichlet (که مقاله Vorlesungen über Zahlentheorie) او یک مقاله کلاسیک است؛ جکوبی Jacobi که علامت جکوبی Jacobi symbol را معرفی کرد؛ لیوویل Liouville ؛ زلر Zeller ؛ آیزنشتین Eisenstein؛ کومرKummer و

کرونکر Kronecker نیز در این زمینه کارهایی کرده‌اند. این تئوری تقابل درجه دوم و سوم cubic and biquadratic reciprocity را شامل می‌شود (گاوس؛ جکوبی که اولین بار قانون تقابل درجه سوم cubic reciprocity را ثابت کرد ؛ و کومر).

نمایش اعداد با صورت درجه دوم دوتایی binary quadratic forms مدیون گاوس است. کوشی، پوانسو Poinsot (1845)، لوبکLebesque (1859-1868) و بخصوص هرمیت Hermite به موضوع چیزهایی افزوده‌اند. آیزنشتاین در تئوری صورت‌های سه‌گانه پیشتاز است، و تئوری فرم‌ها theory of forms به طور کلی مدیون او و اچ. اسمیتH. J. S. Smith است. اسمیت دسته بندی کاملی از صورتهای سه گانه انجام داد و تحقیقات گاوس در مورد صورت‌های درجه دوم حقیقی به فرمهای مختلط افزود. جستجوهایی در مورد نمایش اعداد به صورت جمع ۴، ۵، ۶، ۷، ۸ مربع توسط آیزنشتاین ادامه یافت و اسمیت آن را کامل کرد.

دیریشله اولین کسی بود که در یک دانشگاه آلمانی در این مورد سخنرانی کرد. او در مورد بسط قضیه اویلر که می‌گوید:

که اویلر و لوژاندر برای ۰۴ ۳ = n آن را ثابت کردند و دیریشله نشان داد که: z5 y5 x5 +.
بین نویسندگان فرانسوی بورل Borel و پوانکاره Poincare ذهن قوی داشتند و تانریTannery و استیلجزStieltjes. کرونکر، کومر، شرینگ Schering، باخمن Bachmann و ددکیند Dedekind آلمانی‌های پیشتاز هستند. در اتریش مقاله استلز Stolz’s vorlesungen uber allgemeine Arithmetik (1885-86) و در انگلستان تئوری اعداد ماتیو Mathew (قسمت اول، ۱۸۹۲) جزو کارهای عمومی دانشگاهی هستند. جنوچیGenocchi، سیلوستر Sylvester، و جی. گلیشرJ.W.L. Glaisher به این تئوری چیزهایی افزوده‌اند .
نظریه مقدماتی اعداد

در نظریه مقدماتی اعداد، اعداد صحیح را بی استفاده از روش‌های به‌کار رفته در سایر شاخه‌های ریاضی بررسی می‌‌کنند. مسائل تقسیم‌پذیری، الگوریتم اقلیدس برای محاسبه بزرگ‌ترین مقسوم‌الیه مشترک، تجزیه اعداد به اعداد اول، جستجوی عدد تام perfect number و همنهشتی‌ها در این رده هستند. برخی از یافته‌های مهم این رشته قضیه کوچک فرما،قضیه اعداد اول و قضیه اویلر، قضیه باقیمانده چینی و قانون تقابل درجه دوم هستند. خواص توابع ضربی مانند تابع موبیوس و تابع φ اویلر و دنباله اعداد صحیح و فاکتوریل‌ها و اعداد فیبوناچی در همین حوزه قرار دارند.
حل بسیاری از مسائل در نظریه مقدماتی اعداد بر خلاف ظاهر ساده‌ آن‌ها نیازمند کوشش بسیار و به‌کار گرفتن روش‌های نوین است. چند نمونه:
• حدس گلدباخ در مورد نمایش اعداد زوج به صورت جمع دو عدد اول،
• حدس کاتالان در مورد توانهای متوالی از اعداد صحیح،
• حدس اعداد اول تؤامان در مورد بینهایت بودن زوج‌های اعداد اول،
• حدس کولاتز در مورد تکرار ساده،
• حدس اعداد اول مرسن در مورد بینهایت بودن اعداد اول مرسن و …
همچنین ثابت شده که نظریه معادلات دیوفانتی تصمیم‌ناپذیر است (به مسئله دهم هیلبرت مراجعه کنید.)
نظریه تحلیلی اعداد
در نظریه تحلیلی اعداد از حسابان و آنالیز مختلط برای بررسی سؤالاتی در مورد اعداد صحیح استفاه می‌شود. مثال‌هایی در این مورد قضیه اعداد اول و فرض ریمان هستند. مسئله وارینگ (یعنی نمایش هر عدد صحیح به صورت جمع چند مربع یا مکعب)، حدس اعداد اول تؤامان (یافتن بینهایت عدد اول با اختلاف ۲)، و حدس گلدباخ (نمایش هر عدد زوج به‌صورت مجموع دو عدد اول) نیز با روشهای تحلیلی مورد حمله قرار گرفته‌اند. اثبات متعالی بودن ثابت‌های ریاضی، مانند π و e نیز در بخش نظریه تحلیلی اعداد قرار دارند. اگرچه حکم‌هایی در مورد اعداد متعالی خارج از محدوده مطالعات اعداد صحیح به نظر می‌آید، در واقع مقادیر ممکن برای چند جمله‌ای‌ها با ضریب‌های صحیح مانند e را بررسی می‌کنند. همچنین این‌گونه مسائل با مبحث تقریب دیوفانتین نیز ارتباط نزدیک دارند که موضوع آن این است که چگونه می‌توان یک عدد حقیقی داده شده را با یک عدد گویا تقریب زد؟
نظریه جبری اعداد
در نظریه جبری اعداد، مفهوم عدد به اعداد جبری، که همان ریشه‌های چند جمله‌ای‌هائی با ضریب گویا هستند، گسترش می‌یابد. در این حوزه اعدادی مشابه اعداد صحیح با نام اعداد صحیح جبری وجود دارد. در این عرصه لازم نیست ویژگی‌های آشنای اعداد صحیح (مانند تجزیه یگانه) برقرار باشد. مزیت روش‌های استفاده شده در این رشته (مثل نظریه گالوا، میدان همانستگی field cohomology، نظریه رده میدان class field theory، نمایش‌های گروه‌ها و توابع-L) این است که برای این رده از اعداد، نظم را تا حدودی تأمین م‌کند.
حمله به بسیاری از سؤالات نظریه اعداد به صورت “پیمانه p، برای کلیه اعداد اول p” مناسب‌تر است (به میدان‌های متناهی مراحعه کنید.) به چنین کاری “محلی سازی” می‌‌گویند که به ساختن عدد p-ای می‌انجامد. نام این رشته “تحلیل موضعی” است که از نظریه اعداد جبری ناشی می‌شود.
نظریه هندسی اعداد
نظریه هندسی اعداد (که قبلا به آن هندسه اعداد می‌گفتند) جنبه‌هایی از هندسه را به نظریه اعداد پیوند می‌دهد؛ و از قضیه مینکوسکی در ارتباط با نقاط توری در مجموعه‌های محدب و تحقیق در مورد چپاندن کره‌ها (sphere packings) در فضای Rn شروع می‌شود.
نظریه ترکیبیاتی اعداد
نظریه ترکیبیاتی اعداد به مسائلی در نظریه اعداد می‌پردازد که با روش‌های ترکیبیاتی بررسی می‌شوند. پل اردوش بنیان‌گذار اصلی این شاخه از نظریه اعداد بود.
نظریه محاسباتی اعداد
نظریه محاسباتی اعداد به الگوریتم‌های مربوط به نظریه اعداد می‌‌پردازد. الگوریتم‌های سریع برای امتحان اعداد اول و تجزیه اعداد صحیح در رمزنگاری کاربردهای مهمی دارند .

پیچیده گی های اعداد اول
در۱۵۰ سال اخیر یا بیشتر نظریه اعداد پیشرفتهای زیادی در
جهات مختلف داشته.شرح انواع مسائلی که در نظریه اعداد
بررسی شده اند در اینجا ممکن نیست.این مبحث بسیار وسیع

است و در بعضی قسمتها نیاز به دانستن مطالب عمیقی از
ریاضیات پیشرفته (مثل نظریه گالوا و آنالیز در سطح بالا )

دارد. با اینحال مسائل زیادی در نظریه اعداد وجود دارد که به
آسانی قابل بیانند . برخی از آنها به اعداد اول مربوط میشوند .
در نوشته ی قبلی اعداد کوچکتر از ۵۰۰ ذکر شده اند .در ۱۹۱۴
ریاضیدان آمریکایی دی.ان.لمر با منتشر کردن جدول همه اعداد

اول کوچکتر از ۱۰ میلیون متوجه شد که فقط ۶۶۴۵۷۹ تا عدد
اول وجود دارد یعنی حدود۶٫۵ درصد.همچنین دی اچ لمر(پسر
دی.ان.لمر) تعداد اعداد اول کوچکتر از ۱۰ میلیارد را حساب

کرد ۴۵۵۰۵۲۵۱۲٫حدوداً ۴٫۵ درصد .
بررسی دقیق اعداد اول نشان می دهد که توزیع بسیار نامنظمی
دارند . به آسانی ثابت میشود که شکافهای به اندازه ی دلخواه
بین آنها وجود دارد. بررسی این اعداد نشان میدهد که اعداد اول
متوالی ، نظیر ۳و۵ یا ۱۰۱و۱۰۳ همین طور تکرار میشوند

جفتهایی از اعداد اول که تفاضلشان ۲ است اعداد اول دو قلو
نامیده میشوند بیش از ۱۰۰۰ جفت از این جفتها زیر ۱۰۰۰۰۰
بیش از ۸۰۰۰ جفت زیر ۱۰۰۰۰۰۰ وجود دارند این مسئله که
آیا بینهایت تا از این اعداد وجود دارد یا نه هنوز حل نشده است

ماشین ریاضی جدیدی برای رام کردن اعداد اول (‪(۲
اعداد اول بسیار زیبا و جذابند و در عین حال معمای حیرت انگیز و سرگردان‌کننده ای را در برابر ریاضی دانان مطرح ساخته اند: تعریف این اعداد کاملا ساده است، رفتار آنها در سلسله اعداد و نحوه ظاهر شدنشان در آن کاملا بی‌نظم و فاقد قاعده به نظر می‌آید و هرچه شمار بیشتری از آنها شکارمی‌شوند، کار شکار بعدی‌ها دشوارتر می‌شود.
طی قرنهای متمادی ریاضی دانان در شرق و غرب عالم به جستجوی راههایی برای دستیابی به اعداد اول برخاسته‌اند و با این همه بهترین روشهایی که تا بحال در این زمینه ابداع شده چنان کند است که حتی پر سرعت‌ترین کامپیوتر های کنونی نیز نمی‌توانند کمک چندانی در شکار این اعداد شگفت انگیز کنند.
اعداد اول بر طبق تعریف اعدادی هستند که تنها به ‪ ۱‬و بر خودشان تقسیم پذیرند. به عنوان نمونه اعداد ‪ ۲،۳،۵،۷،۱۱،۱۳،۱۷،۱۹‬اعداد اول کمتر از ‪۲۰‬ در سلسله اعداد طبیعی هستند. اما هرچه در این سلسله پیش تر برویم اعداد اول نایاب تر می‌شوند.

بطوریکه اگر چندین میلیون بار به سرعت کامپیوتر های کنونی افزوده شود، تنها چند رقم به شماره ارقام بزرگترین عدد اولی که تا به حال شناخته شده افزوده می‌گردد.
ریاضی دانان در آرزوی دست یافته به روشی هستند که با استفاده از آن بتوانند با سرعت به یافتن اعداد اول توفیق یابند و یا اگر با عددی هر اندازه پر رقم و بزرگ روبرو شدند بتوانند با سرعت مشخص سازند که آیا عدد اول است ؟ – اما یافتن چنین روشی به فسفر مغز نیاز دارد و نه سرعت کامپیوتر. –

اما یک گروه از ریاضی دانان هندی مدعی شده‌اند که در آستانه دستیابی به همان آزمونی هستند که ریاضی دانان قرنها مشتاقانه در آرزویش بوده اند.
مانیندرا اگراوال ‪ ,Manindra Agrawal‬و دانشجویانش نیراج کایال ‪Neeraj‬ ‪ Kayal‬و نیتین سکسنا ‪ Nitin Saxena‬در موسسه تکنولوژی کانپور مدعی شده‌اند که در آستانه تکمیل آزمونی هستند که اول بودن یا نبودن هر عدد طبیعی را با سرعت مشخص می‌کند. این آزمون در صورتی که تکمیل شود می‌تواند تبعات و نتایج بسیار گسترده‌ای برای جهان کنونی به بار آورد.
درحال حاضر بسیاری از معاملات تجاری و نقل و انتقالات مالی و نیز مبادله اطلاعات محرمانه از طریق شبکه های مخابراتی مانند اینترنت و با بهره گیری از رمز کردن پیامها به انجام می‌رسد.

اعداد اول در تنظیم این قبیل رمزها نقشی اساسی بر عهده دارند و از همین رو دستیابی به اعداد اول جدید که دیگران از آن بی‌خبر باشند برای سازندگان این رمزها و نیز مشتریان آنان از اهمیت زیاد برخوردار است.

اما اگر روش این محققان هندی تکمیل شود در آن صورت امنیت این قبیل نقل و انتقالات در معرض خطر جدی قرار خواهد گرفت.
سابقه قرار گرفتن ریاضی دانان تحت جاذبه اعداد اول به قرنها پیش باز می گردد. در سال ‪ ۱۸۰۱‬کارل گائوس از بزرگترین ریاضی دانان اعلام کرد که مساله تشخیص اعداد اول از اعداد غیر اول یکی از مهمترین مسائل حساب به شمار می‌آید.

اعداد اول به یک معنا همان نقشی را در سلسله اعداد بازی می‌کنند که اتمها در ساختار بنای کیهان دارند- این اعداد سنگ بنای ناپیدای دیگر اعداد محسوب می‌شوند.
یکی از عادی‌ترین راههای شناسایی اعداد اول تقسیم آن به دیگر اعداد است.
از طرف دیگر با اندکی تامل روشن می‌شود که اعداد زوج عدد اول نیستند زیرا همگی بر ‪ ۲‬قابل قسمتند.
اعدادی که بتوان جذر آنها را به دست آورد نیز اول نیستند. اما این روشها برای شناسایی اعداد اول بزرگ به کلی بی‌فایده‌اند. به عنوان مثال اگر عدد اولی دارای ‪ ۱۰۰‬رقم باشد در آن صورت کل عمر باقیمانده از کیهان بر اساس نظریه های جدید کیهانشناسی نیز برای مشخص کردن اول بودن یا نبودن این عدد با این شیوه های متعارف کفایت نمی‌کند.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
word قابل ویرایش - قیمت 9700 تومان در 43 صفحه
97,000 ریال – خرید و دانلود
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد