بخشی از مقاله

شیمی تجزیه


تعریف:
شیمی تجزیه شامل جداسازی ، شناسایی و تعیین مقدار نسبی اجزای سازنده یک نمونه از ماده است.
هدف:
هدف یک تجزیه شیمیایی ، فراهم آوردن اطلاعاتی درباره ترکیب نمونه‌ای از یک ماده است. در بعضی موارد اطلاعات کیفی در مورد حضور یا عدم حضور یک یا چند جزء در نمونه کافی است. در مواردی دیگر ، اطلاعات کمی مورد نظر است. بدون در نظر گرفتن هدف نهایی ، اطلاعات مورد نیاز در انتها ، توسط اندازه‌ گیری یکی از خواص فیزیکی بدست می‌آیند که این خاصیت بطور مشخص به جزء یا اجزاء سازنده مورد نظر مربوط است.


دیدکلی :
شیمی تجزیه نقش حیاتی را در توسعه علوم مختلف به عهده دارد، لذا ابداع فنون جدید تجزیه و بسط و تکامل روشهای تجزیه شیمیایی موجود ، آنقدر سریع و گسترده است که اندکی درنگ در تعقیب رویدادهای تازه سبب بوجود آمدن فاصله‌های بسیار زیاد علمی خواهد شد. نقش این فنون در فعالیتهای تولیدی روز به روز گسترده‌تر و پردامنه‌تر می‌گردد. امروزه ، کنترل کیفیت محصولات صنعتی و غیر صنعتی ، جایگاه ویژه‌ای دارد که اساس این کنترل کیفیت را تجزیه‌های شیمیایی

انجام شده به کمک روشهای مختلف تجزیه‌ای تشکیل می‌دهد. شیمی تجزیه (Analytical chemistry) ، شامل جداسازی ، شناسایی و تعیین مقدار نسبی اجزای سازنده یک نمونه ‌از ماده ‌است. شیمی تجزیه کیفی ، هویت شیمیایی گونه‌ها را در نمونه آشکار می‌سازد. تجزیه کمی ، مقدار نسبی یک یا چند گونه یا آنالیت را به‌صورت عددی معلوم می‌دارد. پیش از انجام تجزیه کمی ‌، ابتدا لازم است اطلاعات کیفی بدست آید. معمولا تجزیه کیفی و کمی ‌شامل یک مرحله جداسازی نیز هستند.

زمینه‌های تاریخی تجریه کیفی
به ابتکار "پروفسور رونالد بلچر" که به نارساییهای متعدد سیستمهای تجزیه کیفی معدنی موجود پی برده و تصمیم به اصلاح این سیستمها از طریق تحقیقات تجربی و به بحث گذاشتن موضوع در یک گروه از آنالیستهای باتجربه گرفته بود، موسسه MAQA (موسسه تجزیه کیفی میدلندز) تاسیس شد. هدفهای موسسه عبارت بود از تهیه طرحهایی برای توصیه در:
1. بررسی سیستماتیک کاتیونهای معمولی مبتنی بر روشهای کلاسیک جا افتاده.


2. بررسی آنیونها.
3. بررسی عناصر غیر معمول.
4. بررسی نامحلولها.
طرح MAQA یکی از سلسله سیستمهای تجزیه کیفی هدف است که برخی از آنها به قرن هیجدهم بر‌می‌گردد. طرحهای قدیمی‌تر از بعضی جهات جالب‌اند، به این معنی که بسیاری از جداسازیها و واکنشهای انتخابی که هنوز هم جای خود را در اعمال تجزیه کیفی حفظ کرده‌اند، از آنها نشات گرفته است.


نیاز مبرم به تشخیص سنگها و مواد معدنی مفید موجب پدید آمدن تجزیه کیفی معدنی شد. در نتیجه ، در جاهایی که صنایع پیشرفته استخراج شکوفا می‌شد، این هنر رشد سریعی کرد که نمونه بارز آن ، در سوئد بود. بدون آن که حق سایر بنیانگذاران تجزیه را فراموش کرده باشیم، شیمیدان سوئدی به نام "توربون برگمن" را ممکن است بتوان بعنوان بنیانگذار تجزیه کیفی سیستماتیک معرفی کرد.


رده بندی روشهای تجزیه‌ای
رده بندی روشهای تجزیه‌ای معمولا بر طبق خاصیتی است که در فرآیند اندازه ‌گیری نهایی مشاهده می‌شود. در جدول زیر فهرستی از مهمترین این خاصیتها و همچنین نام روشهایی که مبتنی بر این خاصیتها می‌باشند، دیده می‌شود. بر این نکته توجه داشته باشیم که تا حدود سال 1920 تقریبا تمام تجزیه‌ها براساس دو خاصیت جرم و حجم قرار داشتند. در نتیجه ، روشهای وزنی و حجمی به نام روشهای کلاسیک تجزیه‌ای شهرت یافته‌اند.

 

بقیه روشها شامل روشهای دستگاهی است. علاوه بر تاریخ توسعه این روشها ، جنبه‌های معدودی روشهای دستگاهی را از روشهای کلاسیک جدا و متمایز می‌سازند. بعضی از تکنیکهای دستگاهی حساستر از تکنیکهای کلاسیک می‌باشند. ولی بعضیها حساس‌تر نیستند. با ترکیب خاصی از عناصر یا ترکیبات ، یک روش دستگاهی ممکن است بیشتر اختصاصی باشد. در مواردی دیگر ، یک روش حجمی یا وزنی ، کمتر در معرض مزاحمت قرار دارد. مشکل است که گفته شود که کدامیک از نظر صحت ، راحتی و صرف زمان بر دیگری برتری دارد.


همچنین این مساله درست نیست که روشهای دستگاهی ، الزاما دستگاههای گرانتر یا پیچیده‌تری را بکار می‌گیرند و در حقیقت ، استفاده از یک ترازوی خودکار نوین در یک تجزیه وزنی شامل دستگاه ظریفتر و پیچیده‌تری در مقایسه با بسیاری از روشهای دیگری است که در جدول زیر ثبت شده‌اند.


روشهای تجزیه‌ای مبتنی بر اندازه ‌گیری خاصیت خاصیت فیزیکی که اندازه گیری می‌شود.
وزنی جرم
حجمی حجم
طیف نورسنجی (اشعه ایکس ، ماوراء بنفش ، مرئی ، IR)؛ رنگ سنجی ؛ طیف بینی اتمی ؛ رزونانس مغناطیسی هسته و رزونانس اسپین الکترون جذب تابش
طیف بینی نشری (اشعه ماوراء بنفش ، ایکس ، مرئی)؛ نور سنجی شعله‌ای؛ فلوئورسانس (اشعه ایکس ، فرابنفش و مرئی) ؛ روشهای رادیوشیمیایی نشر تابش
کورسنجی ، نفلومتری ، طیف بینی رامان پراکندن تابش
شکست سنجی و تداخل سنجی شکست تابش


روشهای پراش اشعه ایکس و الکترون پراش تابش
قطبش سنجی ، پاشندگی چرخش نوری و دو رنگی نمایی دورانی
چرخش تابش
پتانسیل سنجی ، پتانسیل سنجی با زمان پتانسیل الکتریکی
رسانا سنجی رسانایی الکتریکی
پلاروگرافی ، تیتراسیونهای آمپرسنجی جریان الکتریکی
کولن سنجی کمیت الکتریسیته
طیف سنجی جرمی
نسبت جرم به بار


روشهای جداسازی
در بیشتر موارد ، تجزیه یک نمونه از ماده ، قبل از اندازه گیری فیزیکی نهایی آن ، ابتدا احتیاج به یک یا چند مرحله زیر دارد:
1. نمونه برداری ، برای فراهم کردن نمونه‌ای که ترکیب آن ، نماینده توده ماده باشد.
2. تهیه و انحلال مقدار معینی از نمونه
3. جداسازی گونه مورد اندازه گیری از اجزاء سازنده‌ای که در سنجش نهایی مزاحمت ایجاد می‌کنند.


این مراحل معمولا بیشتر از خود اندازه گیری نهایی تولید مزاحمت می‌کنند و خطاهای بزرگتری را باعث می‌شوند. روشهای جداسازی به این دلیل مورد احتیاج‌اند که خواص فیزیکی و شیمیایی مناسب برای اندازه گیری غلظت معمولا بین چندین عنصر یا ترکیب مشترک است. در بررسی مواد بسیار نزدیک و مرتبط به هم ، مشکل جداسازی بیشترین اهمیت را می‌یابد و لذا نیاز به تکنیکهایی نظیر کروماتوگرافی ، تقطیر جزء به جزء ، استخراج ناهمسو و یا الکترولیز در پتانسیل کنترل شده دارد.


انتخاب روش برای یک مسئله تجزیه‌ای
جدول مذکور ، حاکی از این است که برای شیمیدانی که با یک مسئله تجزیه‌ای روبرو است، غالبا روشهای متعددی وجود دارند که وی می‌تواند یکی از آنها را انتخاب کند. مدت زمانی که او باید برای کار تجزیه صرف کند و کیفیت نتایج حاصل ، بنحوی حساس ، به این انتخاب بستگی دارد. شیمیدان برای اخذ تصمیم خود در مورد انتخاب روش ، باید پیچیدگی ماده مورد تجزیه ، غلظت گونه مورد نظر ، تعداد نمونه‌هایی که باید تجزیه شوند و دقت مورد نیاز را در نظر گیرد.


پس از این ، انتخاب وی به دانش او در مورد اصول اساسی که زیر بنای هر یک از این روشهای قابل دسترسی است و در نتیجه قدرت و محدودیت این روشها بستگی خواهد داشت.

دستگاهوری در تجزیه
در مفهومی بسیار وسیع ، یک دستگاه که برای تجزیه شیمیایی مورد استفاده قرار می‌گیرد، داده‌های کمی تولید نمی‌کند، بلکه در عوض بسادگی اطلاعات شیمیایی را به شکلی تبدیل می‌کند که آسانتر قابل مشاهده است. بنابراین به دستگاه می‌توان به صورت یک وسیله ارتباطی نگریست. دستگاه این هدف را در مراحل مختلف زیر انجام می‌دهد:
1. تولید یک علامت


2. تبدیل این علامت به علامتی با ماهیت متفاوت (تبدیل نامیده می‌شود).
3. تقویت علامت تبدیل شده
4. ارائه این علامت به صورت یک جابجایی بر روی یک صفحه مندرج یا صفحه یک ثبات.
لزومی ندارد که تمام این مراحل مجموعا در هر دستگاه انجام گیرد. در نتیجه‌ی ظهور این همه مدارات الکترونیکی در آزمایشگاه ، یک شیمیدان امروزی خود را با این سوال روبرو می‌بیند که چه مقدار الکترونیک باید بداند تا بتواند موثرترین استفاده را از وسایل موجود برای تجزیه ، بکند. مهم برای یک شیمیدان این است که قسمت عمده کوشش خود را به اصول شیمیایی ، اندازه گیریها و محدودیتها و قوتهای ذاتی آن معطوف دارد.

سیر تحولی و رشد
اصولا توسعه و تغییر پایدار در فنون و روشهای تجزیه وجود دارد. طراحی دستگاه بهتر و فهم کامل مکانیسم فرآیندهای تجزیه‌ای ، موجب بهبود پایدار حساسیت ، دقت و صحت روشهای تجزیه‌ای می‌شوند. چنین تغییراتی به انجام تجزیه‌های اقتصادی‌تر کمک می‌کند که غالبا به حذف مراحل جداسازی وقت گیر ، منجر می‌شوند. باید توجه داشت که اگر چه روشهای جدید تیتراسیون مانند کریوسکوپی ، Pressuremetriz ، روشهای اکسیداسیون _ احیایی و استفاده از الکترود حساس فلوئورید ابداع شده‌اند، هنوز از روشهای تجزیه وزنی و تجزیه جسمی (راسب کردن ، تیتراسیون و استخراج بوسیله حلال) برای آزمایشهای عادی استفاده می‌شود.


به هر حال در چند دهه اخیر ، تکنیکهای سریعتر و دقیق‌ترِی بوجود آمده‌اند. در میان این روشها می‌توان به اسپکتروسکوپی ماده قرمز ، ماورای بنفش و اشعه X اشاره کرد که از آنها برای تشخیص و تعیین مقدار یک عنصر فلزی با استفاده از خطوط طیفی جذبی یا نشری استفاده می‌گردد. سایر روشها عبارتند از:
• کالریمتری (رنگ سنجی) که به توسط آن یک ماده در محلول بوسیله شدت رنگ آن تعیین می‌شود.


• انواع کروماتوگرافی که به توسط آنها اجزای یک مخلوط گازی بوسیله آن از درون ستونی از مواد متخلل یا از روی لایه‌های نازک جامدات پودری تعیین می‌گردند.
• تفکیکی محلولها در ستونهای تبادل یونی
• آنالیز عنصر ردیاب رادیواکتیو.
• ضمنا میکروسکوپی الکترونی و اپتیکی ، اسپکترومتری جرمی ، میکروآنالیز ، طیف‌سنجی رزونانس مغناطیسی هسته‌ای (NMR) و رزونانس چهار قطبی هسته نیز در همین بخش طبقه بندی می‌شوند.
خودکارسازی روشهای تجزیه‌ای در برخی موارد با استفاده از رباتهای آزمایشگاهی ، اهمیت روزافزونی پیدا کرده است. چنین شیوه‌ای ، انجام یکسری تجزیه‌ها را با سرعت ، کارایی و دقت بهتر امکانپذیر می‌سازد. میکروکامپیوترها با قابلیت شگفت‌انگیز نگهداری داده‌ها و بسته‌های نرم افزار گرافیکی بطور قابل ملاحظه‌ای موجبات جم

ع آوری ، نگهداری ، پردازش ، تقوبت و تفسیر داده‌های تجزیه‌ای را فراهم می‌آورند.
انواع تجزیه
وقتی آزمایش به شناسایی یک یا چند چیز جز از یک نمونه (شناسایی مواد) محدود می‌گردد، تجزیه کیفی نامیده می‌شود، در حالی که اگر آزمایش به تعیین مقدار یک گونه خاص موجود در نمونه (تعیین درصد ترکیب در مخلوطها یا اجزای ساختمانی یک ماده خالص) محدود گردد، تجزیه کمی نامیده می‌شود. گاهی کسب اطلاعاتی در زمینه آرایش فضایی اتمها در یک مولکول یا ترکیب بلورین ضروری است، یا تاکید حضور یا موقعیت برخی گروههای عامل آلی در یک ترکیب مورد تقاضا است، چنین آزمایشهایی تحت عنوان تجزیه ساختمانی نامیده می‌شوند و ممکن است با جزئیاتی بیش از یک تجزیه ساده مورد توجه قرار گیرند.
ماهیت روشهای تجزیه‌ای


روشهای تجزیه‌ای معمولا به دو دسته کلاسیک و دستگاهی طبقه بندی می‌شوند. روشهای کلاسیک شامل روشهای شیمیایی مرطوب ، نظیر وزن سنجی و عیار سنجی است. در واقع تفاوت اساسی بین روشهای دو دسته وجود ندارد. همه آنها مشتمل بر وابستگی یک اندازه گیری فیزیکی به غلظت آنالیت می‌باشند. در حقیقت روشهای تجزیه‌ای محدودی وجود دارند که صرفا دستگاهی‌اند و یا بیشتر آنها متضمن مراحل شیمیایی متعددی قبل از انجام اندازه گیری دستگاهی هستند.

کاربردهای شیمی تجزیه
کنترل کیفیت محصول
بیشتر صنایع تولیدی نیازمند به تولید با کیفیت یکنواخت هستند. برای کسب اطمینان از برآورده شدن این نیازمندی مواد اولیه و همچنین محصول نهایی تولید ، مورد تجزیه‌های شیمیایی وسیعی قرار می‌گیرند.
نمایش و کنترل آلوده کننده‌ها
فلزات سنگین پسمانده‌های صنعتی و حشره کشهای آلی کلردار ، دو مشکل کاملا شناخته شده مربوط به ایجاد آلودگی هستند. به منظور ارزیابی چگونگی توزیع و عیار یک آلوده کننده در محیط ، به یک روش تجزیه‌ای حساس و صحیح نیاز است و در کنترل پسابهای صنعتی ، تجزیه شیمیایی روزمره حائز اهمیت است.
مطالعات پزشکی و بالینی
عیار عناصر و ترکیبات مختلف در مایعات بدن ، شاخصهای مهمی از بی نظمی‌های فیزیولوژیکی می‌باشند. محتوی قند بالا در ادرار که نشانه‌ای از یک حالت دیابتی است و وجود سرب در خون ، از شناخته‌ترین مثالها در این زمینه می‌باشد.
عیارگیری


از دیدگاه تجارتی در برخورد با مواد خام نظیر سنگهای معدنی ، ارزش سنگ معدن ، از روی فلز موجود در آن تعیین می‌شود. این موضوع ، مواد با عیار بالا را نیز غالبا شامل می‌شود. بطوری که حتی تفاوت کم در غلظت می‌تواند از نظر تجاری تاثیر قابل ملاحظه‌ای داشته باشد. بنابراین یک روش تجزیه‌ای قابل اعتماد و صحیح از اهمیت اساسی برخوردار است.

شیمی تجزیه در آزمایشگاه :
نقش شیمی ‌تجزیه در علوم
شیمی تجزیه نقش حیاتی در توسعه علوم دارد. به عنوان مثال ، "ویلهلم اسوالد" (Wilhelm Ostwald) در سال 1894 نوشت:
««شیمی ‌تجزیه یا هنر تشخیص مواد مختلف و تعیین اجزای سازنده آن

، نقش اول را در کاربردهای مختلف علوم دارد؛ چرا که پاسخگوی سوالاتی است که در هنگام اجرای فرایندهای شیمیایی برای مقاصد علمی ‌و فنی مطرح می‌شود. اهمیت فوق‌العاده آن ، باعث شده ‌است که ‌از همان دوران نخستین تاریخ شیمی ‌، مجدانه شروع به رشد و توسعه کند و سوابق موجود شامل بخش قابل ملاحظه ای از کارهای کمی ‌است که تمامی‌ علوم را در بر می‌گیرد'.»»
از زمان اسوالد تاکنون ، شیمی‌ تجزیه ‌از یک هنر به یک علم در زمینه‌های مختلف صنعت ، طب و سایر علوم ، تحول و تکامل یافته ‌است. به‌عنوان مثال :


• برای تعیین کارآیی وسایل کنترل دور ، لازم است مقدار هیدروکربنها ، اکسیدهای نیتروژن و منوکسید کربن موجود در گازهای اگزوز اتومبیل اندازه گیری شوند.
• اندازه گیری کمّی‌ کلسیم یونیده در سرم خون ، ما را در تشخیص مرض پاراتیروئید در بیماران یاری می‌کند.
• با اندازه گیری کمی نیتروژن در مواد غذایی ، میزان پروتئین موجود در آنها و در نتیجه ‌ارزش غذایی آنها معلوم می‌شود.
• مقدار مرکاپتان موجود در گازهای مصرفی خانه‌ها بطور مستمر تحت کنترل قرار می‌گیرد تا از وجود مقدار معینی مرکاپتان برای ایجاد بوی نامطبوع که هشدار دهنده نشت گاز است، اطمینان حاصل کنند.


• کشاورزان متجدد ، کود شیمیایی و آبیاری را به نحوی تنظیم می‌کنند که منطبق با نیاز گیاه در طی فصلهای رشد باشد. آنها این نیاز را از تجزیه کمی‌ گیاه و خاکی که گیاه در آن می‌روید، معلوم می‌کنند.
• ‌اندازه گیری‌های کمی ‌دارای نقش حیاتی در بسیاری از کارهای پژوهشی در زمینه‌های شیمی ، زیست شناسی ، زیست شیمی ‌، زمین شناسی و سایر علوم است.


طبقه‌بندی روشهای تجزیه کمی
نتایج یک تجزیه کمی ‌را از دو اندازه گیری بدست می‌آوریم. یکی وزن یا حجم نمونه مورد اندازه گیری است و دوم ، اندازه گیری کمیتی است که با مقدار ماده مورد تجزیه در آن نمونه متناسب می‌باشد. معمولا در مرحله دوم ، تجزیه ، کامل می‌شود. شیمیدانان روشهای تجزیه را بر طبق طبیعت این اندازه گیری اخیر طبقه‌بندی می‌کنند. در یک روش وزنی ، جرم آنالیت یا جرم ماده‌ای که بطور شیمیایی به آن ارتباط دارد، تعیین می‌شود. در یک روش حجمی ‌، حجم محلولی که

دارای مقدار کافی واکنشگر برای واکنش کامل با آنالیت است، اندازه گیری می‌شود.
روشهای الکتروشیمیایی شامل اندازه گیری خواصی نظیر پتانسیل ، جریان ، مقاومت و مقدار الکتریسیته است. روشهای طیف‌بینی بر مبنای اندازه گیری برهمکنش بین تابش الکترومغناطیسی و اتمها یا مولکولهای آنالیت (اثر تابش بر ماده) و یا تولید چنین تابشی توسط آنالیت استوارند.
بالاخره ، باید به چند روش متفرقه نیز اشاره کرد. این روشها شامل اندازه گیری خواصی چون نسبت جرم به بار ( طیف سنجی جرمی‌ ) ، سرعت واپاشی پرتوزایی ، گرمای واکنش ، رسانندگی گرمایی ، فعالیت نوری و ضریب شکست است.
مراحل تجزیه کمی ‌نوعی


انتخاب روش تجزیه
اولین مرحله حیاتی در هر تجزیه کمی ‌، انتخاب روش است. انتخاب گاهی دشوار است و به تجربه و بصیرت شیمیدان بستگی دارد. از عوامل مهم در انتخاب روش ، میزان صحت مورد انتظار است. متاسفانه برای دستیابی به نتایج بسیار مطمئن ، همواره لازم است که وقت زیادی نیز صرف شود. معمولا ، روش را بر اساس مصالحه بین میزان صحت و جنبه‌های اقتصادی انتخاب می‌کنند.
دومین عاملی که در ارتباط با جنبه‌های اقتصادی در نظر گرفته می‌شود، تعداد نمونه‌های مورد تجزیه ‌است. اگر تعداد نمونه‌ها زیاد باشد، در آن صورت می‌توان وقت زیادی را صرف عملیات مقدماتی نظیر نصب و درجه‌بندی دستگاه‌ها و وسایل و همچنین تهیه محلولهای استاندارد کرد، اما اگر فقط یک نمونه یا نهایتا تعداد کمی ‌نمونه داشته باشیم، شاید صلاح در انتخاب روشی باشد که مراحل مقدماتی را یا نداشته و یا حداقل ممکن را داشته باشد.
نمونه برداری
برای دستیابی به ‌اطلاعات ارزشمند ، لازم است تجزیه بر روی نمونه ای انجام شود که ترکیب آن ، کاملا معرف تمامی ‌ماده‌ای که نمونه ‌از آن انتخاب شده ‌است، باشد. هنگامی‌ که ماده بزرگ و ناهمگن است، برای انتخاب نمونه نماینده باید سعی و دقت بسیار معطوف شود. نمونه برداری چه ساده باشد، چه پیچیده ، شیمیدان قبل از آغاز عملیات تجزیه باید از اینکه نمونه آزمایشگاهی نماینده کل محموله ‌است، اطمینان یابد.


تهیه نمونه آزمایشگاهی
یک نمونه جامد آزمایشگاهی را آسیاب می‌کنند تا اندازه ذرات آن کاهش یابد، سپس مخلوط می‌کنند تا همگن شود و قبل از انجام تجزیه بر روی آن ، برای مدت زمانهای مختلف نگهداری می‌کنند. در هر یک از این مراحل ، برحسب میزان رطوبت محیط ، ممکن است جذب یا دفع سطحی آب اتفاق افتد. چون ممکن است جذب یا دفع آب باعث تغییرات شیمیایی در نمونه شود، لذا بهتر است نمونه‌ها را درست قبل از انجام تجزیه ، خشک کنیم. روش دیگر آنکه ، رطوبت نمونه را همزمان با انجام تجزیه بر روی نمونه ، طبق یک روش جداگانه ، اندازه گیری کنیم.


استفاده ‌از نمونه‌های همتا
اکثر تجزیه‌های شیمیایی بر روی نمونه‌های همتا که وزن یا حجم آنها با دقت توسط ترازوی تجزیه و یا یک وسیله حجمی ‌دقیق تعیین شده ‌است، انجام می‌شود. همتاسازی موجب ارتقای کیفیت نتایج و همچنین معیاری برای قابلیت اطمینان آنها خواهد بود.
تهیه محلولهای نمونه
بیشتر تجزیه‌ها بر روی محلول حاصل از نمونه‌ها انجام می‌شود. در حالت ایده‌آل ، حلال باید تمامی ‌نمونه (نه فقط آنالیت) را به‌سرعت و بطور کامل حل کند. شرایط انحلال باید در حد امکان ملایم باشد تا مانع از اتلاف آنالیت شود. متاسفانه بسیاری از مواد مورد تجزیه در حلالهای معمولی نامحلولند. مواد سیلیکاتی ، بسپارهای با جرم زیاد یا نسوج حیوانی از این قبیل هستند. در چنین مواردی تبدیل آنالیت به حالت محلول می‌تواند یک امر دشوار و وقت‌گیر باشد.


حذف تداخل کننده‌ها
تعداد کمی ‌از خواص شیمیایی و فیزیکی مهم در تجزیه‌های شیمیایی به گونه شیمیایی خاصی منحصر است. در عوض ، واکنشهایی که بکار می‌رود و خواصی که ‌اندازه گیری می‌شود، شامل ویژگی گروهی از عناصر و ترکیبات است. گونه‌های غیر از آنالیت را که بر اندازه گیری نهایی موثرند، «تداخل کننده» می‌نامند. تدابیری باید اندیشید تا قبل از اندازه گیری نهایی ، آنالیت از تداخل کننده‌ها جدا شود. هیچ قاعده و قانون قطعی برای حذف تداخل کننده‌ها نمی‌توان ذکر کرد که حل این مساله ، دشوارترین مرحله یک تجزیه ‌است.
درجه‌بندی و اندازه گیری


تمامی ‌نتایج حاصل از تجزیه به ‌اندازه گیری نهایی X که یک خاصیت فیزیکی آنالیت است، بستگی دارد. این خاصیت باید به صورت معین و تکرارپذیر با تغییر غلظت آنالیت CA تغییر کند. در حالت ایده‌آل ، خاصیت فیزیکی اندازه گیری شده ، مستقیما با غلظت متناسب است. یعنی :
CA=kX

که در آن k ثابت تناسب است. برای روشهای تجزیه ، باید مقدار k به صورت تجربی و با CA معلوم تعیین شود. فرایند تعیین مقدار k مرحله مهمی ‌است و به نام درجه‌بندی موسوم است.
محاسبه نتایج
معمولا ، محاسبه غلظت آنالیت با استفاده ‌از داده‌های تجربی ، بویژه با ماشینهای محاسبه و کامپیوتر مدرن ، یک امر ساده و سرراست است. چنین محاسباتی بر مبنای داده‌های خام که در مرحله ‌اندازه گیری بدست آمده‌اند و همچنین استوکیومتری واکنش شیمیایی که تجزیه بر اساس آن انجام یافته ‌است و بالاخره عوامل دستگاه ، ‌استوار است.

 

ارزیابی نتایج و برآورد میزان اطمینان آنها
نتایج تجزیه بدون برآورد میزان اطمینان آنها کامل نیست. شخص آزمایش کننده ، برای آنکه داده‌ها ارزشمند باشند، لازم است میزان عدم قطعیت نتایج محاسبه شده را معلوم کند (محاسبه خطا).

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید