بخشی از مقاله

آهنربای دائمی

مقدمه
آهنربای دائم به اختصار PM1 خوانده می‌شود و قطعه‌ای از فولاد سخت و یا دیگر مواد مغناطیسی که تحت اثر میدانهای شدید ، مغناطیس شده و این اثر را برای مدت طولانی در خود حفظ می‌کنند. اثر آهنربایی اولین بار ، روی قطعه‌هایی از سنگ معدن آهن ، به نام آهنربای طبیعی یا معدنی در طبیعت مشاهده شد و دیدند که قطعات آهن را به خود جذب می‌کند.

بعدا دریافتند که چنانچه قطعه درازی از این سنگ آهن مغناطیسی معدن را ، بطور معلق در هوا نگهدارند این قطعه دراز خود را در امتدادی قرار می‌دهد که یک انتهایش به طرف قطب شمال زمین قرار دارد و این انتهای میله آهن مغناطیس دار را قطب شمال و سر دیگر آن را قطب جنوب نامیدند. چنین قطعه سنگ معدن آهن ، آهنربای میله‌ای نامیده شد.

نظریه اول آهنربایی
هر آهنربا از تعدادی ذره آهنربایی تشکیل شده است. وقتی یک قطعه آهن ، آهنربا نیست، ذرات آهنربایی بطور پراکنده و دلخواه داخل آن قرار دارند و وقتی ذرات داخل آهن در امتدادی منظم قرار گیرند، اثرات مغناطیسی آنها باهم جمع شده و آن آهن ، آهنربا می‌شود.
نظریه دوم آهنربایی
خاصیت آهنربایی به الکترونها وابسته است. الکترون دارای یک نیروی دوار در اطراف خود می‌باشد و وقتی مدارهای الکترونها در امتداد میله آهن طوری قرار گیرند که دایره‌های نیرو با یکدیگر جمع شوند، میله آهنی ، آهنربا می‌شود. در طبیعت از نقطه نظر تغییرات چگالی فلوی مغناطیسی (B) بر حسب جریان (I) می‌توان مواد را به دو دسته تقسیم نمود:

1. مواد غیر مغناطیسی: از این مواد می‌توان پلاستیک و میکا و عایقهای جریان الکتریکی را نام برد. در این مواد ، نفوذ پذیری مغناطیسی عددی ثابت است و مقدار آن را µ˚= 4π×10-7 فرض می‌کنیم.
2. مواد مغناطیسی: مواد مغناطیسی که به مواد فرومغناطیسی نیز معروفند جزء گروه آهن به شمار می‌روند. در این مواد با جریان مفروض I چگالی شار (B) افزونتری نسبت به فضای آزاد شکل می‌گیرد و منحنی B-I این مواد غیر خطی است. مواد مغناطیسی خود به دو گروه تقسیم بندی می‌شوند:
• مواد فرومغناطیسی نرم: که آنها خطی کردن تغییرات B بر حسب I (منحنی B-I) امکان پذیر است، از تقریب خوبی برخوردار می‌باشد و در این مواد ، B بخاطر I حاصل می‌شود.
• مواد فرومغناطیسی سخت: که از اینگونه مواد برای ساخت مغناطیس دائم استفاده می‌شود. در این مواد B بخاطر دو عامل جریان (I) و خاصیت مغناطیس شوندگی ماده (M) بروزمی کند. این مواد در اثر میدانهای شدید ، مغناطیس شده و این اثر را تا مدت طولانی خود حفظ می‌کنند.
مواد مغناطیسی برای مقاصد خاص نیز ساخته می‌شوند، بطوری که طی سی سال گذشته چند ماده مغناطیسی جدید ساخته شده که مشخصات لازم برای ایجاد یک آهنربای دائم خوب را دارا هستند. آهنربای دائم خوب ، از ماده‌ای است که تا حد امکان شار باقیمانده (یا چگالی شار باقیمانده) بزرگی داشته باشند. عمده این مواد فریتها (مواد مغناطیسی سرامیکی) و مواد مغناطیسی خاک کمیاب هستند.
انواع آهنربای دائم
سه نوع آهنربای دائم که دارای کاربرد فراوان هستند به شرح زیرند:
آهنربای آلنیکو
آلنیکو از ابتدای نام سه عنصر آلومینیوم ، نیکل و کبالت گرفته شده است. این آلیاژ که عمدتا از فلزات آهن و آلومینیوم و نیکل و کبالت ساخته می‌شود، قابلیت پذیرش نیروی مغناطیسی بالایی و به منظور ساختن آهنربای دائم بلندگوها و لامپهایی با حوزه مغناطیسی و در سروموتورهای DC2 پیشرفته استفاده می‌شود.

معمولا در آخر اسم "آلنیکو" حرفی اضافه می‌گردد که مشخص کننده قدرت آهنربا است. فرضا "آلنیکوv" قویترین آهنربای دائم نسبت به "آلنیکوها" است و معمولا آهنربای "آلنیکو" را به صورت طولی مغناطیس می‌کنند و سپس مورد استفاده قرار می‌دهند. منظور از مغناطیس کردن طولی این است که دو قطب S و N در طول جسم قرار می‌گیرند.
آهنربای فریت
این آهنربا را آهنربای سرامیک نیز می‌نامند. این آهنربای دائم از ترکیب مواد ذوب شده نوعی چینی و پودر ماده مغناطیسی ساخته می‌شود. این آهنربا چون پودر پس ماند مغناطیسی و نیروی خنثی کننده زیادی دارد، آن را به صورت عرضی مغناطیسی می‌کنند. منظور از مغناطیس کردن عرضی ، قرار گرفتن دو قطب S و N در عرض جسم است و چون چگالی شار (B) این آهنربای دائم کم است برای جبران چگالی شار زیاد، آن را دراز می سازند.

چون هزینه ساخت این آهنربا کم بوده و مواد اولیه آن به ارزانی قابل تهیه است، بطور گسترده مورد استفاده قرار می‌گیرد. نامگذاری آهنربای فریت با توجه به نوع عنصری که در ساخت آهنربا از آن استفاده شده است صورت می‌گیرد. مثل فریت استرونیتام و یا فریت باریم.
آهنربای سارماریوم - کبالت
عنصر اصلی این آهنربای دائم عنصر ساماریوم با علامت اختصاری Sm و عدد اتمی 62 است. چون این آهنربای کمیاب (به دلیل عنصر تشکیل دهنده کمیاب ساماریوم) دارای پس ماند مغناطیسی و خنثی کننده خیلی زیادی است، به همین دلیل می‌تواند شدتی به مراتب بزرگتر از آهنربای دائم معمولی داشته باشد. به عنوان مثال در یک طول و مساحت برابر ، چگالی شار (B) این آهنربا دو برابر آهنربای سرامیک است.

هزینه تولید این آهنربا قابل ملاحظه است و به همین دلیل آن را کم قطر می‌سازند. چون شدت مغناطیسی این آهنربا بالا است، لذا از چنین آهنربایی که در ابعاد کوچک و وزن کمتر شدت مغناطیسی خوبی دارد در ساعتهای الکترونیکی و لامپهای ماگنترون و تجهیزات نظامی و سروموتورها هواپیما استفاده می‌کنند. به این ترتیب روز به روز دامنه کاربرد این آهنربا رو به افزایش است.

دید کلی
آهنربای دائمی با کیفیت بالا کاربردهای بسیار زیاد و مهمی در علم و انقلاب تکنولوژیک ، مثلا در اسبابهای اندازه گیری الکتریکی دارند. ولی میدانهایی که توسط آنها ایجاد می‌شود خیلی قوی نیست، اگر چه آلیاژهای مخصوصی که اخیرا بدست آمده‌اند داشتن آهنربای دائمی قوی که خواص مغناطیسی خود را برای مدت مدیدی حفظ کنند امکان پذیر ساخته است. از جمله این آلیاژها ، مثلا فولاد-کبالت است که شامل حدود 50% آهن ، 30% کبالت و مخلوطهایی از تنگستن ، کروم و کربن است.


عیب دیگر آهنربای دائمی این است که القای مغناطیسی آنها نمی‌تواند به سرعت تغییر کنند. از این نظر ، سیملوله‌های حامل جریان (آهنرباهای الکتریکی) بسیار مناسبند. زیرا با تغییر جریان در سیم پیچ سیملوله می‌توان میدان آنها را به آسانی تغییر داد. با قرار دادن هسته آهنی داخل سیملوله ، میدان آن را می‌توان صدها هزار بار افزایش داد. بیشتر آهنرباهای الکتریکی که در مهندسی بکار می‌روند چنین ساختمانی دارند.
ساخت آهنربای الکتریکی ساده
آهنربای الکتریکی ساده را می‌توان در منزل ساخت. کافی است که چندین دور سیم عایق شده‌ای را بر یک میله آهنی (پیچ یا میخ ، بپیچانیم و دو انتهای سیم را به یک منبع dc نظیر انبار ، یا پیل گالوانی وصل کنیم. بهتر است آهن ابتدا تابکاری شود، یعنی ، تا دمای سرخ شدن داغ شود. مثلا در کوره گرم و سپس به آرامی سرد شود. سیم پیچ باید توسط رئوستایی با مقاومت 1W تا 20W به باتری وصل شود، بطوری که جریان مصرف شده از باتری خیلی شدید نباشد. گاهی آهنرباهای الکتریکی شکل نعل اسب را دارند که برای نگه داشتن بار بسیار مناسبترند.
ساختار آهنربای الکتریکی
میدان پیچه با هسته آهنی بسیار قویتر از پیچه بدون هسته است، زیرا آهن درون پیچه شدیدا مغناطیده و میدان آن بر میدان پیچه منطبق است. ولی ، هسته‌هایی آهنی که در آهنرباهای الکتریکی برای تقویت میدان بکار می‌روند، فقط تا حدود معینی مقرون به مساحت‌اند. در واقع ، میدان آهنرباهای الکتریکی عبارت است از برهمنهی میدان حاصل از سیم ‌پیچ حامل جریان و میدان هسته مغناطیده ، برای جریانهای ضعیف ، میدان دوم به مراتب قویتر از میدان اولی است.

وقتی که میدان در سیم پیچ افزایش می‌یابد، ابتدا این دو میدان به یک میزان معینی متناسب با جریان افزایش می‌یابند، بطوری که نقش هسته تعیین کننده می‌ماند. ولی ، با افزایش بیشتر جریانی که از سیم پیچ می‌گذرد، مغناطش آهن کند می‌شود و آهن به حالت اشباع مغناطیسی نزدیک می‌شود. وقتی که عملا تمام جریانهای مولکولی موازی شدند، افزایش بیشتر جریانی که از سیم ‌پیچ می‌گذرد نمی‌تواند چیزی بر مغناطش آهن اضافه کند، در حالی که میدان سیم‌ پیچ به زیاد شدن متناسب با جریان ادامه می‌دهد.

هرگاه جریان شدید از سیم‌ پیچ (برای دقت بیشتر ، در لحظه‌ای که تعداد آمپر ـ دورها در متر به 106 نزدیک می‌شود.) بگذارند، میدان حاصل از سیم ‌پیچ بسیار قویتر از میدان هسته آهنی اشباع شده می‌شود. بطوری که هسته عملا بی‌فایده می‌شود و فقط ساختمان آهنربای الکتریکی را پیچیده می‌کند. به این دلیل ، آهنرباهای الکتریکی ، پر قدرت بدون هسته آهنی ساخته می‌شوند.
آهنربای الکتریکی پر قدرت
تهیه آهنرباهای الکتریکی پرقدرت مسأله انقلاب تکنولوژیک بسیار پیچیده‌ای است. در واقع ، برای اینکه بتوانیم جریانهای بزرگی را بکار بریم، سیم‌پیچها باید از سیم کلفتی ساخته شوند. در غیر این صورت ، سیم‌ پیچ شدیدا گرم و حتی گداخته می‌شود. گاهی بجای سیم از لوله‌های مسی استفاده می‌شود، که در آن جریان نیرومند آب برای خنک کردن سریع دیواره‌های لوله که جریان از آن می‌گذرد گردش می‌کند. ولی با سیم ‌پیچی که از سیم کلفت یا لوله ساخته شده است داشتن تعداد زیادی دور در واحد طول ناممکن است.
از طرف دیگر ، استفاده از سیم نازک تعداد دورهای زیادی را در واحد متر ممکن می‌سازد، نمی‌گذارد تا جریانهای زیاد را بکار بریم. پیشرفت زیادی را در ایجاد میدانهای مغناطیسی بدست آمده به بهره گیری از ابررسانا‌ها در سیم پیچهای مغناطیسها مربوط می‌شود، که بکار بردن جریانهای شدید را مقدور می‌سازد.
تکنیک کاپیتزا
کاپیتزا (P.L. kapitza) فیزیکدان شوروی سابق راه هوشمندانه‌ای را برای بیرون آمدن از این وضع پیشنهاد کرد. او جریانهای عظیم 104 آمپر را برای مدت بسیار کوتاهی حدود 0.01 s از سیملوله‌ای گذرانید. در این مدت ، سیم ‌پیچ سیملوله خیلی شدید گرم نشد، در حالی که میدانهای مغناطیسی کوتاه مدت شدیدی بدست آمده بودند.

البته او وسایل خاصی را ترتیب داد که برای ثبت نتایج آزمایشهایی که در آنها اثر میدان مغناطیسی پرقدرت حاصل در سیملوله برای اجسام گوناگون مورد بررسی قرار می‌گرفتند. در اغلب کاربردهای فنی ، تعداد آمپر ـ دورها در سیم ‌پیچهای آهنرباهای الکتریکی میدانهای نسبتا شدید می‌توان بدست آورد (با القای چند تسلا).

منشا میدان مغناطیسی آهنربای دائمی
مفاهیم پایه:

وقتی که تحقیق روی پدیده های مغناطیسی شروع شد، سوالاتی بدون پاسخ در مغناطیس مطرح گردید مثلا گفته می شد که ...
• میدان مغناطیسی آهنرباهای دائمی از چه ناشی می شود؟
• چه فرایندی فیزیکی میله فولادی غیر آهن ربا را به آهن ربا تبدیل می کند؟
• واقعیت وجودی قطب ها در میله های آهن ربا، از چیست؟ و ...

این پرسش های اساسی توجه پژوهشگران جلب کردند. واقعیت وجودیقطب ها در میله های آهنربا ، جایی که خواص مغناطیسی خیلی روشن ظاهر می شد، مورد توجه دانشمندان قرار گرفت. بدیهی بود که قطب ها متفاوتند، به قسمتی از هر قطب یک آهن ربا ، قطبی از آهن ربای دیگر را جذب و قطب دیگر آن را دفع می کرد. برای توجیه این پدیده ها ، گیلبرت فرضیه وجود “ بارهای مغناطیسی” طبیعی را مطرح کرد، یعنی قطب های شمال و جنوب که مانند بارهای الکتریکی اندر کنش دارند.


نظریات کولن در مغناطیس:
• کولن نظریه بارهای مغناطیسی گیلبرت را گسترش داد. کولن با استفاده از ترازوی پیچشی ، اندر کنش بین دو آهن ربا باریک و دراز را بررسی کرد. او نشان داد که می توان هر قطب را با “مقدار مغناطیس” یا “بار مغناطیسی “ مشخص کرد و قانون اندر کنش قطب های مغناطیسی مانند اندر کنش بارهای الکتریکی است:

دو قطب هم نام ، با نیرویی که “بارهای مغناطیسی” متمرکز در این قطب ها تناسب مستقیم وبا مجذور فاصله بین آنها نسبت عکس دارد، یکدیگر را دفع ، در حالی که دو قطب ناهمنام را یکدیگر را جذب می کند. بنابراین ، اگر یکی از قطب ها را با بار مغناطیسی M و دیگری را بار مغناطیسی m مشخص کنیم و r فاصله بین این دو قطب باشد، نیروی اندر کنش بین قطب ها برابر می شود با: F=kMm/r2 که در آن k ضریب تناسب است و به انتخاب یکاها بستگی دارد.
• بر اساس آزمایشات کولن اندازه شدت میدان مغناطیسی برابر با نیروی وارده از طرف میدان مغناطیسی بر واحد بار مغناطیسی اختیار شد. اگر نیروی F روی قطب مغناطیسی m اثر کند شدت میدان مغناطیسی با رابطه زیر داده می شود. H=F/m به شدت میدان مغناطیسی جهتی نسبت داده می شود که بر جهت نیروی وارده بر قطب شمال آهن ربا منطبق است.

چرا تک قطبی مغناطیسی نداریم؟
بارهای الکتریکی را می توان از هم جدا کرد و در یک جسم بارهای مثبت یا منفی را زیادتر کرد. ولی قطب های شمال و جنوب یک جسم را نمی توان جدا کرد و جسم تک قطب نمی توان به دست آورد. به علاوه ، دو قطب هر آهنربایی “مقدار مغناطیس” برابری نشان می دهند. به طوری که نمی توان جسمی به دست آورد که مغناطیس شمال یا جنوب بیشتری داشته باشد. اگر آهنربا را ریز ریز بکنیم هر تکه اش دارای دو قطب شمال و جنوب است و کوچکترین آهنربا ، مولکول یا اتم می باشد که برای خودش هر دو قطب را در کنار هم دارد. به عبارتی جدا کردن قطب ها به هیچ طریقی ممکن نیست، یعنی نمی توان جسم تک قطبی به وجود آورد.
نتایج عدم وجود تک قطبی مغناطیسی:

عدم امکان جدا کردن مغناطیس های شمال و جنوب یک جسم ، کولن را به این نتیجه گیری رساند که این دو نوع بار مغناطیسی در ذره بنیادی جسم آهنربا شده ، پیوند ناگسستنی دارد. به عبارت دیگر ، پذیرفته شد که هر بخش کوچکی از این جسم «اتم ، مولکول یا گروه کوچکی از اتم ها و مولکول ها) نوعی آهنربای کوچک است با دو قطب در دو انتها به این صورت کولن به فرضیه مهمی درباره وجود آهنرباهای بنیادی با دو قطب با پیوند جدایی ناپذیر دست یافت.


توجیه آهن ربا شدن آهن:
باید قبول کنیم که در تکه آهن ، آهنربا نشده ، آهنرباهای بنیادی وجود دارند، ولی همگی به طور کاتوره ای (آشفته) قرار گرفته اند بدون هیچ ترتیبی آهنرباهای کوچک در تمام جهات ممکن قرار گرفته اند، شمار آهنرباهایی که قطب شمالشان در یک جهت قرار گرفته اند با شمار آهنرباهایی که در جهت مخالف قرار گرفته اند تقریبا برابر است. به این دلیل، اثرهای همه این آهنرباهای بنیادی به طور متقابل یکدیگر را خنثی می کند و تکه آهن در کل خاصیت آهنربایی ندارد.

هر گاه این تکه آهن را در میدان مغناطیسی قرار دهیم ، مثلا آهنربایی به آن نزدیک کنیم یا داخل پیچه حامل جریان قرار دهیم، میدان مغناطیسی آهنرباهای بنیادی را می چرخاند و به صورت زنجیر وار در جهت هم قرار می دهد. در اینجا اثر قطب های مخالف در جسم آهنربا همدیگر را خنثی می کند و در قطب های مغناطیسی در دو سر میله ظاهر می شوند. از این رو ، مغناطش جسم عبارت است از مرتب شدن جهت گیری های آهنرباهای بنیادی بر اثر میدان مغناطیسی خارجی ، یعنی فرایندی که از خیلی جهات شبیه فرایند قطبش عایق ها است.

سیر تحولی و رشد :
انسانهای اولیه به سنگهایی برخورد کردند که قابلیت جذب آهن را داشتند. معروف است که ، نخستین بار ، شش قرن قبل از میلاد مسیح ، در شهر باستانی ماگنزیا واقع در آسیای صغیر «ترکیه امروزی) ، یونانیان به این سنگ برخورد کردند. بنابراین بخاطر نام محل پیدایش اولیه ، نام این سنگ را ماگنتیت یا مغناطیس گذاشتند که ترجمه فارسی آن آهنربا می باشد. سنگ مذکور از جنس اکسید طبیعی آهن با فرمول شیمیایی Fe3O4 می باشد.

بعدها ملاحظه گردید که این سنگ در مناطق دیگر کره زمین نیز وجود دارد. پدیده مغناطیس همراه با کشف آهنربای طبیعی مشاهده شده است. با پیشرفت علوم مختلف و افزایش اطلاعات بشر در زمینه مغناطیس ، انواع آهنرباهای طبیعی و مصنوعی ساخته شد. امروزه از آهنربا در قسمتهای مختلف مانند صنعت ، دریانوردی و ... استفاده می گردد.


منشا پیدایش :
کهربا شیرهای است که مدتها پیش از بعضی از درختان مانند کاج که چوب نرم دارند، بیرون تراوید. و در طی قرنها سخت شده و بصورت جسم جامدی نیم شفاف در آمده است. کهربا به رنگهای زرد تا قهوهای وجود دارد. کهربای صیقل داده شده سنگ زینتی زیبایی است و گاهی شامل بقایای حشرههایی است که در زمانهای گذشته در شیره چسبناک گرفتار شده اند.

یونانیان باستان خاصیت شگفت انگیز کهربا تشخیص داده بودند. اگر کهربا را به شدت به پارچهای مالش دهیم اجسامی مانند تکه های کاه یا رانههای گیاه را که نزدیک آن باشد جذب میکند. اما سنگ مغناطیس یک ماده معدنی است که در طبیعت وجود دارد. نخستین توصیف نوشته شده از کاربرد سنگ مغناطیس به عنوان یک قطب نما در دریانوردی در کشورهای غربی ، مربوط به اواخر قرن دوازدهم میلادی است. ولی خواص این سنگ خیلی پیش از آن در چین شناخته شده بود.


انواع آهنربا :

اساس کار تمام آهنرباها یکسان است، اما به دلیل کاربرد در دستگاههای مختلف ، آرایش و صنعت ، آن را به اشکال و اندازه‌های گوناگون می سازند، و لذا انواع آن از لحاظ شکل عبارتند از :
• تیغهای
• میلهای
• نعلیشکل
• استوانهای
• حلقهای
• کروی
• پلاستیکی
• سرامیکی و ...

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید