بخشی از مقاله

حساب دیفرانسیل و انتگرال

حسابیا حساب دیفرانسیل و انتگرال ریاضیات مربوط به حرکت و تغییر است.
تاریخچه
حساب دیفرانسیل و انتگرال در آغاز برای براورده کردن نیازهای دانشمندان قرن 17 ابداع شد.البته لازم به ذکر است ریشه های این علمرا میتوان تا هندسه کلاسیک یونانی میتوان ردیابی کرد
حساب دیفرانسیل و انتگرال به دانشمندان امکان می داد شیب خمها را تعریف کنند، زاویه آتشباری توپ را برای حصول بیشترین برد بدست آورند،و زمانهایی که سیارات نزدیکترین و دورترین فاصله را از هم دارند،پیش بینی کنند.


پیش از پیشرفتهای ریاضی که به کشف بزرگ آیزاک نیوتن و لایب نیتس انجامید،یوهانس کپلر منجم با بیست سال تفکر،ثبت اطلاعات،و انجام محاسباث سه قانون حرکت سیارات را کشف کرد:

قانون اول کپلر

1.هر سیاره در مداری بیضی شکل حرکث میکندکه یک کانونش در خورشید است


2.خط واصل بین خورشید و ستاره در مدتهای مساوی مساحات مساوی را طی میکنند


قانون دوم کپلر


3.مربع گردش هر سیاره به دور خورشید،متناسب است با مکعب فاصله متوسط آن سیاره از خورشید
ولی استنتاج قوانین کپلر از قوانین حرکت نیوتن با استفاده از حساب دیفرانسیل و انتگرال کار ساده ای است.
قلمرو امروزی حساب دیفرانسیل و انتگرال

امروز حساب دیفرانسیل و انتگرال در آنالیز ریاضی قلمرو واقعا گسترده ای دارد و فیزیکدانان و ریاضیدانان که اول بار این موضوع را ابداع کردند مسلما شگفت زده و شادمان می شدند اگر می دیدند که این موضوع چه انبوهی از مسائل را حل میکند.


امروزه اقتصاددانان از حساب دیفرانسیل و انتگرال برای پیش بینی گرایشهای کلی اقتصادی استفاده می کنند. اقیانوس شناسان برای فرمول بندی نظریه هایی درباره جریانهای دریایی بهره میگیرند،و هواشناسان آن را برای توصیف جریان هوای جو به کار میگیرند،دانشمندان علوم فضایی آن را برای طراحی موشکها به کار میبرند.روانشناسان از آن برای درک ثوهمات بصری استفاده می کنندو...


به طور خلاصه حساب دیفرانسیل و انتگرال علمی است که درتمام علوم امروزی کاربرد بسزایی دارد.
بزرگان این علم

این علم عمدتا کار دانشمندان قرن هفدهم اسث. از میان این دانشمندان میتوان به رنه دکات ،کاوالیری،فرما
و جیمز گرگوری اشاره کرد.


پیشرفت حساب دیفرانسیل و انتگرال در قرن 18 با سرعت زیادی ادامه یافت، در زمره مهمترین افرادی که در این زمینه سهم داشتند میتوان به برادران برنولی اشاره کرد.در واقع خانواده برنولی همان نقشی را در ریاضیات داشتند که خانواده باخ در موسیقی ایفا کردند.
تکمیل ساختار منطقی روشهای حساب دیفرانسیل و انتگرال را ریاضیدانان قرن 19 از جمله لوئی کوشی و کارل وایرشتراس
بر عهده گرفتند.


مطلب را با سخنی از جان فون نویمان که از ریاضیدانان بزرگ قرن بیستم است به پایان میبریم « حساب دیفرانسیل و انتگرال نخستین دستاورد ریاضیات نوین است و درک اهمیت آن کار آسانی نیست. به عقیده من،این حساب روشنتر از هر مبحث دیگری مرحله آغازی ریاضیات نوین را توصیف می کند؛و نظام آنالیز ریاضی، که توسیع منطقی آن است،هنوز بزرگترین پیشرفت فنی در تفکر دقیق به شمار می آید.»

تاریخچه انتگرال:
رياضيات ، دهه هاي جديد انقلاب كامپيوتر را با چند قرن تحقيقات رياضي تلفيق مي كند و هدف اصلي كامپيوترهاي پيشتاز آغازين را برآورده مي كند تا رياضيات و اعمال را با كامپيوتر انجام دهند .
بيش از دو هزار سال پيش ارشميدس (287-212 قبل از ميلاد) فرمول هايي را براي محاسبه سطح وجه ها ، ناحيه ها و حجم هاي جامد مثل كره ، مخروط و سهمي يافت . روش انتگرال گيري ارشميدس استثنايي و فوق العاده بود جبر ، نقش هاي بنيادي ، كليات و حتي واحد اعشار را هم نمي دانست .
ليبنيز (1716-1646) و نيوتن (1727-1642) حسابان را كشف كردند . عقيده كليدي آنها اين بود كه مشتق گيري و انتگرال گيري اثر يكديگر را خنثي مي كنند با استفاده از اين ارتباط ها آنها توانستند تعدادي از مسائل مهم در رياضي ، فيزيك و نجوم را حل كنند.


فورير (1830-1768) در مورد رسانش گرما بوسيله سلسله زمان هاي مثلثاتي را مي خواند تا نقش هاي بنيادي را نشان دهد .رشته هاي فورير و جابجايي انتگرال امروزه در زمينه هاي مختلفي چون داروسازي و موزيك اجرا مي شود .
گائوس (1855-1777) اولين جدول انتگرال را نوشت و همراه ديگران سعي در عملي كردن انتگرال در رياضي و علوم فيزيك كرد . كايوچي (1857-1789) انتگرال را در يك دامنه همبستگي تعريف كرد . ريمان (1866-1826) و ليبيزگو (1941-1875) انتگرال معين را بر اساس يافته هاي مستدل و منطقي استوار كردند .


ليوويل (1882-1809) يك اسكلت محكم براي انتگرال گيري بوجود آورد بوسيله فهميدن اينكه چه زماني انتگرال نامعين از نقش هاي اساسي دوباره در مرحله جديد خود نقش اساسي مرحله بعد هستند . هرميت (1901-1822) يك شيوه علمي براي انتگرال گيري به صورت عقلي و فكري ( يك روش علمي براي انتگرال گيري سريع ) در دهه 1940 بعد از ميلاد استراسكي اين روش را همراه لگاريتم توسعه بخشيد .


در دهه بيستم ميلادي قبل از بوجود آمدن كامپيوترها رياضيدانان تئوري انتگرال گيري و عملي كردن آن روي جداول انتگرال را توسعه داده بودند و پيشرفت هايي حاصل شده بود .در ميان اين رياضيدانان كساني چون واتسون ، تيچمارش ، بارنر ، ملين ، ميچر ، گرانبر ، هوفريتر ، اردلي ، لوئين ، ليوك ، مگنوس ، آپل بلت ، ابرتينگر ، گرادشتاين ، اكستون ، سريواستاوا ، پرودنيكف ، برايچيكف و ماريچيف حضور داشتند .


در سال 1969 رايسيچ پيشرفت بزرگي در زمينه روش علمي گرفتن انتگرال نامعين حاصل كرد . او كارش را بر پايه تئوري عمومي و تجربي انتگرال گيري با قوانين بنيادي منتشر كرد روش او عملاً در همه گروه هاي قضيه بنيادي كارگر نيست تا زماني كه در وجود آن يك معادله سخت مشتق گيري هست كه نياز دارد تا حل شود . تمام تلاش ها ااز آن پس بر روي حل اين معادله با روش علمي براي موفقيت هاي مختلف قضيه اساسي گذاشته شد . ايت تلاش ها باعث پيشرفت كامل سير و روش علمي رايسيچ شد . در دهه 1980 پيشرفت هايي نيز براي توسعه روش او در موارد خاص از قضيه هاي مخصوص و اصلي او شد .


از قابليت تعريف انتگرال معين به نتايجي دست ميابيم كه نشان دهنده قدرتي است كه در رياضيات مي باشد (1988) جامعيت و بزرگي به ما ديدگاه موثر و قوي در مورد گسترش در رياضيات و همچنين كارهاي انجام شده در قوانين انتگرال مي دهد . گذشته از اين رياضيات توانايي دارد تا به تعداد زيادي از نتيجه هاي مجموعه هاي مشهور انتگرال پاسخ دهد ( اينكه بفهميم اين اشتباهات ناشي از غلط هاي چاپي بوده است يا نه ) . رياضيات اين را ممكن مي سازد تا هزاران مسئله انتگرال را حل نماييم به طوريكه تا كنون در هيچ يك از كتابهاي دستنويس قبلي نيامده باشد . در آينده ديگر وظيفه ضروري انتگرال اين است كه به ازمايش تقارب خطوط ، ارزش اصلي آن و مكانيسم فرض ها بپردازد .

کاربرد انتگرال"
اساسي ترين كاربرد انتگرال در رياضيات و فيزيك است . اگر مرز در نقشه يك منطقه خميده شده باشد انتگرال مي تواند دوره هايي از عملكرد آن را توضيح دهد سپس مساحت در سطح شكل احاطه پيدا كرده و پيرامون آنها مي تواند بوسيله دوره هايي از انتگرال شرح داده شود . اين سه بعد براي حجم و سطح در يك جامد وجود دارد . انتگرال معين همچنين براي اندازه گيري چگالي درون يك ماده استفاده مي شود و به آن اجازه مي دهد كه از جايي به جاي ديگر تغيير كند .

چه عواملي در پرتاب يك ماهواره براي چرخش يا يك فضانورد بر روي ماه موثر است ؟ در نزديكي سطح زمين نمونه هوايي كه در اطراف فضا پيما وجود دارد تاثيرات مهمي در مانور و سرعت فضاپيما دارد . شما به انتگرال نياز داريد تا اينكه معادلاتي را حل كنيد براي اينكه بهتر و پر انرژي تر در ميان هوا تكان بخوريد . همه چيز در فضا آسان مي شود : هوا رقيق مي شود و كشش وزن(جازبه زمين) كاهش مي يابد

. مقداري از سوخت مي سوزد و كم مي شود تا (فضاپيما) حركت كند و شما به مكان و هدف چرخش خود نزديك مي شويد . همه هزاران قطعه از تكه هاي نخاله صخره ها بدنه فضاپيما را سوراخ مي كند . شما نياز داريد به تعداد زيادي از انتگرال گيري هاي پرسرعت كه مسير پرواز را محاسبه و تصحيح كند .

دانشمندان پزشكي ، شركت هاي بيمه ، زيست شناسان و سياستمداران همگي علاقمندند كه در مورد اندازه جمعيت هاي گوناگون انسان و حيوان پيش گويي كنند . به سادگي تقريباً همه فرض هايي كه رشد مي كنند و بوجود مي آيند هميشه در يك اندازه است و متناسب است با اندازه رايج و هميشگي . اما اين رشد نمي تواند اتفاق بيافتد زيرا بعد از مدتي غذا ،

آب يا هواي كافي براي افزايش تعداد نفرات وجود ندارد بنابراين يك مدل رئاليستي بزرگ ساخته شد شايد به انضمام يك جمعيت رقابتي بود . آن پستانداران يا ميكروب هاي گياهي با علم ديناميك ( مبحث حركت اجسام ) يا بوسيله يك ساختمان در يك سازه مثل كاهش يافتن پيدايش نرخ ، همه اين قبيل مدل ها استفاده مي شوند در سيستمهايي از معادلات كه نياز دارد به انتگرال در مسير حل آنها .


انتگرال را انتگرال گیری گویند.البته تعاریف متعددی برای انتگرال گیری وجود دارد ولی در هر حال جواب مشابه‌ای از این تعاریف بدست می‌‌آید. انتگرال یک تابع مثبت پیوسته در بازه (0,10) در واقع پیدا کردن مساحت بین خطوط x=0 , x=10 و خم منفی F است. پس انتگرال F بین a و b در واقع مساحت زیر نمودار است. اولین بار لایب نیتس نماد استانداری برای انتگرال معرفی کرد و به عنوان مثال انتگرال f بین a و b رابه صورت نشان می‌‌دهند علامت ،انتگرال گیری از تابع f را نشان می‌‌دهند ،aو b نقاط ابتدا و انتهای بازه هستند و f تابعی انتگرال‌پذیر است و dx نمادی برای متغیر انتگرال گیری است.
انتگرال یک تابع مساحت زیر نمودار آن تابع است.


از لحاظ تاریخی dx یک کمیت بی نهایت کوچک را نشان می‌‌دهد. هر چند در تئوریهای جدید، انتگرال گیری بر پایه متفاوتی پایه گذاری شده است به عنوان مثال تابع f را بین x=0 تا x=10 در نظر بگیرید ،مساحت زیر نمودار در واقع مساحت مستطیل خواهدبود که بین x=0 ،x=10 ،y=0 ،y=3 محصور شده است یعنی دارای طول 10 و عرض 3است پس مساحت آن برابر 30 خواهد بود.


اگر تابعی دارای انتگرال باشد به آن انتگرال‌پذیر گویند و تابعی که از انتگرال گیری از یک تابع حاصل می‌‌شود تابع اولیه گویند. اگر انتگرال گیری از تابع در یک محدوده خاص باشند به آن انتگرال معین گویند که نتیجه آن یک عدد است ولی اگر محدوده آن مشخص نباشد به آن انتگرال نامعین گویند.

محاسبه انتگرال
اکثر روش های اساسی حل انتگرال بر پایه قضیه اساسی حساب دیفرانسیل و انتگرال بنا نهاده شده است که بر طبق آن داریم:
1.f تابعی در بازه (a,b) در نظر می‌‌گیریم. 2.پاد مشتق f را پیدا می‌‌کنیم که تابعی است مانند f که و داریم: 3.قضیه اساسی حساب دیفرانسیل و انتگرال را در نظر می‌‌گیریم:

بنابراین مقدار انتگرال ما برابر خواهد بود.
به این نکته توجه کنید که انتگرال واقعاً پاد مشتق نیست (یک عدد است) اما قضیه اساسی به ما اجازه می‌‌دهد تا از پاد مشتق برای محاسبه مقدار انتگرال استفاده کنیم. معمولاً پیدا کردن پاد مشتق تابع f کار ساده‌ای نیست و نیاز به استفاده از تکنیکهای انتگرالگیری دارد این تکنیکها عبارت‌اند از :

• انتگرال گیری به‌وسیله تغییر متغیر
• انتگرال گیری جزء به جزء :
• انتگرال گیری با تغییر متغیر مثلثاتی
• انتگرال گیری به‌وسیله تجزیه کسرها
روش هایی دیگر نیز وجود دارد که برای محاسبه انتگرالهای معین به کار می‌‌رود همچنین می‌‌توان بعضی از انتگرال ها با ترفند هایی حل کرد برای مثال می‌‌توانید به انتگرال گاوسی مراجعه کنید.
تقریب انتگرالهای معین
محاسبه سطح زیر نمودار به‌وسیله مستطیل هایی زیر نمودار. هر چه قدرعرض مستطیل ها کوچک می‌شوندمقدار دقیق تری از مقدار انتگرال بدست میآید.

انتگرال هایی معین ممکن است با استفاده از روش های انتگرال گیری عددی ،تخمین زده شوند.یکی از عمومی‌ترین روش ها ،روش مستطیلی نامیده می‌‌شود در این روش ناحیه زیر نمودار تابع به یک سری مستطیل تبدیل شده و جمع مساحت آنها نشان دهنده مقدار تقریبی انتگرال است. از دیگر روش هایی معروف برای تخمین مقدار انتگرال روش سیمپسون و روش ذوزنقه‌ای است. اگر چه روش های عددی مقدار دقیق انتگرال را به ما نمی‌دهند ولی در بعضی از مواقع که انتگرال تابعی قابل حل نیست یا حل آن مشکل است کمک زیادی به ما می‌‌کند.


تعریف های انتگرال
از مهم‌ترین تعاریف در انتگرال می‌‌توان از انتگرال ریمان و انتگرال لبگ (Lebesgue) است. انتگرال ریمان به‌وسیله برنهارد ریمان در سال 1854 ارئه شد که تعریف دقیقی را از انتگرال ارائه می‌‌داد تعریف دیگر را هنری لبگ ارائه داد که طبق این تعریف شرایط تعویض پذیری حد و انتگرال با شرط مساوی ماندن عبارت، ارائه می‌‌کرد. از دیگر تعاریف ارائه شده در زمینه انتگرال می‌توان به انتگرال Riemann-Stieltjes اشاره کرد. پس به طور خلاصه سه تعریف زیر از مهم‌ترین تعاریف انتگرال میباشند:
• انتگرال ریمان
• انتگرال لبگ
• انتگرال Riemann-Stieltjes
کاربردهای فیزیکی انتگرالهای چندگانه
مقدمه
بنابر نظریه مولکولی ماده ، هر قطعه از یک جسم مجموعه‌ای از مولکولهاست و در نتیجه جرم آن مجموع جرمهای مولکوهای سازنده آن است. ولی اکثر اجسام فیزیکی که به آنها سروکار داریم از تعداد بسیار زیادی مولکول تشکیل شده‌اند و محاسبه مجموع جرمهای این مولکولها حتی توسط کامپیوترهای جدید غیر ممکن است.

قبلا در انتگرال یک‌گانه ، با استفاده از انتگرال توابع یک‌متغیره ، جرم ، مرکز جرم و گشتاورها یک ورق مسطحه را که جرم آن بطور یکنواخت یا همگن در سراسر آن توزیع شده باشد، مورد مطالعه قرار دادیم. با استفاده از انتگرالهای دوگانه و سه‌گانه می‌توان این مفاهیم را به اجسام ناهمگن مسطحه و فضایی تعمیم داد.

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید