مقاله در مورد هوش مصنوعی یا robat

word قابل ویرایش
39 صفحه
8700 تومان
87,000 ریال – خرید و دانلود

هوش مصنوعی یا robat

هوش مصنوعی بطور خلاصه ترکیبی است از علوم کامپیوتر ، فیزیولوژی و فلسفه ، این شاخه از علوم بسیار گسترده و متنوع است و از موضوعات و رشته های مختلف علوم و فن آوری ، مانند مکانیزم های ساده در ماشین ها شروع شده ، و به سیستم های خبره ختم می شود ، هدف هوش مصنوعی بطور کلی ساخت ماشینی است که بتواند « فکر » کند . اما برای دسته بندی و تعریف ماشینهای متفکر ، می بایست به تعریف « هوش » پرداخت . همچنین به تعاریفی برای «

آگاهی » و « درک » نیز نیازمندیم و درنهایت به معیاری برای سنجش هوش یک ماشین نیازمندیم .
به مدد تحقیقات وسیع دانشمندان علوم مرتبط ، هوش مصنوعی از بدو پیدایش تاکنون راه بسیاری پیموده است . در این راستا ، تحقیقاتی که بر روی توانایی آموختن زبان ها انجام گرفت و همچنین درک عمیق از احساسات ، دانشمندان را در پیشبرد این علم ، یاری کرده است . یکی از اهداف متخصین ، تولید ماشینهایی است که دارای احساسات بوده و حداقل نسبت به وجود خود و احساسات خود واقف باشند. این ماشین باید توانایی تعمیم تجربیات قدیمی خود در شرایط مشابه جدید را داشته و به این ترتیب اقدام به گسترش دامنه دانش و تجربیاتش کند.

برای مثال به رباتی هوشمند بیاندیشید که بتواند اعضای بدن خود را به حرکت درآورد ، او نسبت به این حرکت خود آگاه بوده و با سعی و خطا ، دامنه حرکت خود را گسترش می دهد ، و با هر حرکت موفقیت آمیز یا اشتباه ، دامنه تجربیات خود را وسعت بخشیده و سرانجام راه رفته و یا حتی می دود و یا به روشی برای جابجا شدن ، دست می یابد ، که سازندگانش ، برای او ، متصور نبوده اند.

آنها بدنبال ساخت ماشینی مقلد هستند ، که بتواند با شبیه سازی رفتارهای میلیونها سلول مغز انسان ، همچون یک موجود متفکر به اندیشیدن بپردازد.
مباحث هوش مصنوعی قبل از بوجود آمدن علوم الکترونیک ، توسط فلاسفه و ریاضی دانانی نظیر بول (Boole) که اقدام به ارائه قوانین و تئوری هایی در باب منطق نمودند، مطرح شده بود . در سال ۱۹۴۲ ، با اختراع کامپیوترهای الکترونیکی ، هوش مصنوعی ، دانشمندان را به چالشی بزرگ فراخواند، بنظر می رسید ، تکنولوژی در نهایت قادر به شبیه سازی رفتارهای هوشمندانه خواهد بود.
با وجود مخالفت گروهی از متفکرین با هوش مصنوعی که با دیده تردید به کارآمدی آن می نگریستند تنها پس از چهار دهه شاهد تولد ماشینهای شطرنج باز و دیگر سیستمهای هوشمند در صنایع گوناگون هستیم .
هوش مصنوعی که همواره هدف نهایی علوم کامپیوتر بوده است ، اکنون در خدمت توسعه علوم کامپیوتر نیز می باشد، زبانهای برنامه نویسی پیشرفته ، که توسعه ابزارهای هوشمند را ممکن مسازند ، پایگاههای داده ای پیشرفته ، موتورهای جستجو ، و بسیاری نرم افزارها و ماشینها از نتایج تحقیقات هوش مصنوعی بهره می برند.
در سال ۱۹۵۰ آلن تورینگ (Alain Turing) ، ریاضی دان انگلیسی ، معیار سنجش رفتار یک ماشین هوشمند را چنین بیان داشت :
« سزاوارترین معیار برای هوشمند شمردن یک ماشین ، این است که آن ماشین بتواند انسانی را توسط یک پایانه ( تله تایپ ) به گونه ای بفریبد که آن فرد متقاعد گردد با یک انسان روبه رو است ».
در این آزمایش شخصی از طریق ۲ عدد پایانه ( کامپیوتر یا تله تایپ ) که امکان برقراری ارتباط (Chat) را برای وی فراهم می کنند با یک انسان و یک ماشین هوشمند ، بطور همزمان به پرسش و پاسخ می پردازد ، در صورتی که وی نتواند ماشین را از انسان تشخیص دهد ، آن ماشین ، هوشمند است .
آزمایش تورینگ :

آزمایش تورینگ از قرار دادن انسان و ماشین بطور مستقیم در برابر یکدیگر اجتناب می کند و بدین ترتیب ، چهره و فیزیک انسانی مد نظ آزمایش کنندگان نمی باشد . ماشینی که بتواند از پس

آزمون تورینگ برآید ، از تفکری انسانی برخوردار است .
مدل سازی نحوه تفکر انسان ، تنها راه تولید ماشینهای هوشمند نیست . هم اکنون دو هدف برای تولید ماشینهای هوشمند ، مدنظر است ، که تنها یکی از آن دو از الگوی انسانی جهت فکر کردن بهره می برد :
سیستمی که مانند انسان فکر کند . این سیستم با مدل کردن مغز انسان و نحوه اندیشیدن انسان تولید خواهد شد و لذا از آزمون تورینگ سربلند بیرون می آید ، از این سیستم ممکن است اعمال انسانی سربزند.
سیستمی که عاقلانه فکر کند ، سیستمی عاقل است که بتواند کارها را درست انجام دهد ، در تولید این سیستم ها نحوه اندیشیدن انسان مد نظر نیست ، این سیستم ها متکی به قوانین و منظقی هستند که پایه تفکر آن ها را تشکیل داده و آن ها را قادر به استنتاج و تصمیم گیری می نماید. آنها با وجود که مانند انسان نمی اندیشند ، تصمیماتی عاقلانه گرفته و اشتباه نمی کنند. این ماشینها لزوما درکی از احساسات ندارند. هم اکنون از این سیستم ها در تولید Agent
ها در نرم افزارهای کامپیوتری ، بهره گیری می شود ، Agent ، تنها مشاهده کرده و سپس عمل می کند.
Agent قادر به شناسایی الگوها و تصمیم گیری براساس قوانین فکر کردن خود است . قوانین و چگونگی فکر کردن هر Agent در راستای دستیای به هدفش ، تعریف می شود . این سیستم ها براساس قوانین خاص خود فکر کرده و کار خود را به درستی انجام می دهند. پس عاقلانه رفتار می کنند ، هر چند الزاماٌ مانند انسان فکر نمی کنند.

با وجودی که برآورده سازی نیازهای صنایع نظامی ، مهمترین عامل توسعه و رشد هوش مصنوعی بوده است ، هم اکنون از محصولات این شاخه از علوم در صنایع پزشکی ، رباتیک ، پیش بینی وضع هوا ، نقشه برداری و شناسایی عوارض ، تشخیص صدا و دست خط و بازی ها و نرم افزارهای کامپیوتری استفاده میشود.
ربات تعقیب خط ، نوعی از ربات است که وظیفه اصلی آن تعقیب کردن مسیری به رنگ مثلاٌ سیاه در زمینه ای به رنگ متفاوت مشخصی مثلاٌ سفید است .

یکی از کاربردهای عمده این ربات ، حمل و نقل وسایل و کالاهای مختلف در کارخانجات ، بیمارستان ها ، فروشگاه ها ، کتابخانه ها و … می باشد.
ربات تعقیب خط تا حدی قادر به انجام وظیفه کتاب داری کتابخانه ها
می باشد. به این صورت که بعد از دادن کد کتاب ، ربات با دنبال کردن مسیری که کد آن را تعیین می کند ، به محلی که کتاب در آن قرار گرفته
می رود و کتاب را برداشته و به نزد ما می آورد.
مثال دیگر کاربرد این نوع ربات در بیمارستان های پیشرفته است ، که بیمارستان های پیشرفته خط کشی هایی به رنگ های مختلف به منظور هدایت ربات های پس فایندر به محل های مختلف – مثلا رنگ قرمز به اتاق جراحی یا آبی به اتاق زایمان وجود دارد. بیمارانی که توانایی حرکت کردن و جابجا شدن را ندارند و باید از ویلچر ( ویلچیر = wheelchair ) استفاده کنند ، این ویلچیر نقش ربات تعقیب خط را دارد ، و بیمار را از روی مسیر مشخص به محل مطلوب می برد . و خلاصه

کاربردهای فراوانی دارد و اگر روزی بشود در زندگی مان بکار بریم ، خیلی کیف دارد.
الگوریتم مسیر یابی :
الگوریتم مسیریابی باید طوری نوشته شود تا ربات بتواند هرگونه مسیری
را ، با هر اندازه پیچ و خم دنبال کند ، به طوری که خطای آن مینیمم باشد. تجربه نشان می دهد که بهترین روش برای یافتن و دنبال کردن مسیر ، استفاده از ۴ سنسور است . البت

ه با استفاده از حداقل ۲ سنسور نیز می توان ربات مسیریاب ساخت ، ولی قضیه دو دوتا ۴ تاست ! یعنی با کم کردن سنسور ضریب اطمینان ربات نیز کاهش می یابد. ( اتفاقا اصلا این قضیه صادق نبود ، احتمالاٌ تغییر هر چقدر پول بدی ، متراژ بیشتری پیترا متری
می خوری مناسب تر باشد !)
وظیفه سنسورهای ۱ و ۲ تشخیص پیچ های مسیر و سنسور ۳ مقدار چرخش ربات به جهات مختلف را تعیین می کند.
یعنی زمانی که سنسور ۳ در زمینه سفید قرار گرفت ، چرخ های ربات آن قدر به سمت چپ یا راست می چرخند تا سسنسور شماره ۳ روی خط سیاه قرار گیرد. یکی از دلایل سنسور سوم موجود انتهای مسیر و چرخش ۱۸۰ درجه ربات و برگشتن است . در ضمن این سنسور باعث می شود که ربات

سریع تر پیچ ها را ببیند و خطای منحرف شدن از خط در سر پیچ ها به حداقل می رسد. همچنین اگر خطوطی عمود بر خط مستقیم و شمارش این خطوط به نوعی مفید باشد ، توسط سنسورهای ۱ و ۲ به همراه ۳ انجام می شود ، به این صورت که اگر سنسورهای ۱ و ۲ و ۳ هر سه سیاه بود ، یعنی ربات از یک خط عمود بر خط مستقیم عبور کرده است .
برای درک بهتر نحوه عملکرد سنسورها و ارتباط آن با وضعیت چرخ های ربات به جدول زیر نگاه کنید :

باید توجه داشت که اگر از سنسورهای LDR در ربات استفاده شد. نور محیط ثابت باشد ، طوریکه نور تابیده شده به سنسورها در ابتدای و انتهای مسیر تفاوت چندانی نداشته باشد. زیرا در غیر اینصورت در عملکرد ربات اختلال ایجاد می شود.
برای رفع این مشکل اصول لامپ های LDR با لامپ های حبابی استفاده
می شود که منجر به یکنواخت شدن نور محیط می گردد.
انواع مقاومت های نوری :
انواع مقاومت های متغیری که در طراحی مدارهای ربات با آن سرو کار
داریم ، عبارتند از :
۱) ترمیستور (Termistor) : که مقاومت آن با تغییرات دما تغییر می کند و یکی از کاربردهای آن در ترموستات الکترونیکی می باشد.
۲) Strain gauge : که مقاومت آن با تغییرات نیرو و فشاری که به آن وارد می شود ، تغییر می کند.
۳) (Light Depondent Resistor) LDR : یک نوع سیستم نوری است که بر اثر تغییرات انعکاس نور بر سطح آن ، مقاومتش تغییر می کند.
این مقاومت دارای سطحی صاف می باشد که به عنوان گیرنده عمل می کند. ماده ای که در آن استفاده می شود ، سولفید کادمیم (cds) که یک نیمه هاد

ی است ، می باشد و عموما PhotoCell نامیده می شود که در سلول های نوری به کار می روند. البته که این فتوسل ها مانند سلول های خورشیدی ، الکتریسیته تولید نمی کنند.
از نمودار پیداست که تغییرات مقاومت در مقابل روشنایی ، خطی نمی باشد.
این سنسورها معمولا در مقابل طیف نوری که نزدیک به نور 
می رسد ، بیشتر شود ، سرعت پالس خروجی افزایش می یابد. در واقع Light Neuron می تواند به عنوان Clock Pulse در چیپ های کنترل کننده ، Stepper Motor مثل UCN5804 به کار رود، یعنی هنگامی که شدت نور تابیده شده به LDR افزایش یابد ، سرعت Stepper Motor نیز افزایش می یابد.
LED :
یکی دیگر از المان هایی که در مدار تعقیب خط از آن استفاده می شود ، LED یا Light Emitting Diode است . LED همان طور که از اسمش پیداست ، برای ساطع کردن نور به کار می رود . هرگاته با اعمال ولتاژ ۲ ولت از کاتد به آند جریان برقرار شود ، LED روشن می شود و اگر ولتاژی بیش از این مقدار اعمال شود ، LED می سوزد . بهتر است یک مقاومت مناسب با آن سری کنیم تا جریان ورودی ، بین ۲۵-۵ میلی آمپر کنترل شود. (این محدوده بهترین نرخ تغییرات جریان برای روشن شدن است ).
Infrared Receiver :
اگر کاغذ سفید زیر سنسورهای مادون قرمز بگذاریم ، بیشترین بازتابش را داریم ، و بیس receiver فعال می شود. برحسب اختلاف پتانسیلی که در دو سر رسیور ایجاد میشود ، و مقایسه این اختلاف پتانسیل با ولتاژ مرجع که خودمان تنظیم کرده ایم ، مقایسه گر (Comparator) خروجی صفر با یک
می دهد.
سنسورهای مادون قرمز نورهایی با فرکانس پائین را می توانند تشخیص دهند. اینفرارد سنسورز فقط امواج مادون قرمز را می بیند و این از مزیت
آن ها است ، زیرا امواج IR – که ویلیام هرسکل آن را کشف کرد – در فرکانس ۴۰ KHz هستند و رسیور هم طوری طراحی شده که قادر است سیگنال هایی که در حوزه KHz 40 می باشند را دریافت کند. که این به یک ارتباط قوی بین گیرنده و فرستنده منجر می شود.
بررسی نحوه عملکرد A/D Comparator :
وقتی سنسور در ربات طراحی می شود ، ممکن اس

ت این سئوال پیش آید که : ربات چگونه سیگنال سنسورها را می خواند ؟ ربات با مقادیر دیجیتال کار
می کند. پس باید مقادیر آنالوگ دریافتی از سنسور را به دیجیتال تبدیل کنیم . درنتیجه نیاز به یک (Analogue Digital Convertor) ADC داریم تا مقادیر آنالوگ را دریافت کند و به صورت اعداد باینری به cpu ربات ارسال نماید . مبدل ADC نیاز به یک میکروکنترلر یا مدار دیج

یتالی دارد تا اطلاعات در آن تجزیه و تحلیل شود ، اما امروزه مقایسه گر (Comparator) جایگزین ADC شده است .
همان طور که از اسمش پیداست ، مقایسه گر می تواند دو ولتاژ را به هم مقایسه کند. یکی از این دو ولتاژ ، ولتاژ رفرنس است که ما باید آن را تنظیم کنیم – و ولتاژ دیگر ، همان ولتاژ سنسور است .
خروجی مقایسه گر که به ورودی کامپیوتر وصل می شود ، و کامپیوی دهد.
مدار تعقیب خط با استفاده از سنسورهای IR :
نحوه قرارگیری سنسورها به این صورت است که سنسور وسط روی مسیر و دو سنسور دیگر در طرفین مسیر و نزدیک آن نصب می شوند. و چون از سنسور IR استفاده می شود ، بهتر است سرهای Send/receive با زاویه ای خاص روبه روی هم قرار گیرند. به طوری که از امتداد آن یک مثلث
متساوی الساقین ایجاد شود . در این حالت است که رسیور بیشترین دریافت را دارد .
تعقیب خط فازی :
امروزه برای بالا بردن ضریب اطمینان تعقیب خط ربات ها از الگوریتم
« تعقیب خط فازی » استفاده می کنند. به این صورت که مقایسه گر فقط مقادیر باینری را از سنسور دریافت نمی کند. بلکه مقادیر عددی دیگری را که در رنج صفر تا یک قرار دارن

د ، نیز دریافت می کند.
یعنی قبل از این که سنسور وسط کاملا از خط سیاه ( مسیر ) خارج شود و پیغام سفید بودن سطح زیر را به مقایسه گر بدهد ، برطبق ولتاژ دریافتی از خروجی سنسور ، مقایسه گر موقعیت را در هر لحظه گزارش می دهد ، و براساس این خروجی ها ، موتورهای ربات فرمان چرخیدن یا توقف دریافت می کنند.
انواع ربات :
ربات یک کلمه گرفته شده از کشور چکسلواکی و به معنی کارگر است . سابقه ساخت ربات به ۲۷۰ سال قبل از میلاد مسیح بر می گردد ، زمانی که یونانیان به ساخت مجسمه هایمتحرک می پرداختند.
ربات های امروزی که شامل قطعات الکترونیکی و مکانیکی هستند در ابتدا به صورت بازوهای مکانیکی برای جابجایی قطعات و یا کارهای ساده و تکراری که موجب خستگی و عدم تمرکز کارگر و افت بازده میشد بوجود آمدند. اینگونه رباتها جابجاگر (manipulator) نام دارند.
جابجاگرها معمولا در نقطه ثابت و در فضای کاملا کنترل شده در کارخانه نصب می شوند و به غیر از وظیفه ای که به خاطر آن طراحی شده اند قادر به انجام کار دیگری نیستند. این وظیفه می تواند در حد بسته بندی تولیدات ، کنترل کیفیت و جدا کردن تولیدات بی کیفیت ، و یا کارهای پیچیده تری همچون جوشکاری و رنگزنی با دقت بالا باشد.

 

نوع دیگر رباتها که امروزه مورد توجه بیشتری است رباتهای متحرک هستند که مانند رباتهای جابجا کننده در محیط ثابت و شرایط کنترل شده کار
نمی کنند. بلکه همانند موجودات زنده در دنیای واقعی و با شرایط واقعی زندگی می کنند و سیر اتفاقاتی که ربات باید با آنها روبرو شود از قبل مشخص نیست . در این نوع ربات هاست که تکنیک های هوش مصنوعی میبایست در کنترلر ربات ( مغز ربات ) به کار گرفته شود.

رباتهای متحرک به دسته های زیر طبقه بندی می شوند :
۱- رباتهای چرخ دار با انواع چرخ عادی :

۲- رباتهای پادار :

۳- رباتهای پرنده :

۴- رباتهای چندگانه :

کوچکترین ربات دنیا :
این ربات که الیس (Alice) اسمش هست به اندازه ی حبه قند طول و عرض و ارتفاعش ۲ سانتی متره . این ربات رو همکار ژیل برای پروژه دکتراش ساخت و چهار ماه پیش از تزش دفاع کرد.
نمونه رباتهای کوچولو در چند دانشگاه دیگه از جمله ام آی تی هم ساخته شده ولی یا اندازه اونا به این کوچکی نیست یا اینکه به این اندازه خود مختار نیستند.
الیس دو تا چرخ داره و هر چرخ به یه موتور ساعت وصله ! این موتورهای یه نوع ساعت خیلی دقیق سواچ هستند و کنترلشون با کنترل موتورهای عادی فرق داره و خیلی پیچیده تره .
موتورهای ساعت به صورت تجاری موجود نیستند و شرکت سواچ هم علاقه ای به کار رباتیکی نداره به همین دلیل این ربات فقط جنبه تحقیقاتی داره و نتونسته به صورت محصول تجاری به بازار بیاد. ما موتور ساعت رو
می بریم و دو تکه می گذیم و فقط از یه قسمتش که شامل سیم پیچ و چرخ دنده های خیلی ریزه استفاده می کنیم . چرخ سوم ربات که فقط یه نقطه اتکا برای پای دار نگهداشتن ربات هست ته یه سوزن ته گرده که به چارچوب پلاستیکی ربات فرو شده ! و در حق

یقت چرخ نیست فقط رو سطح صاف
سر می خوره .

این ربات چهار تا سنسور مادون قرمز داره و با اونا اشیا اطراف رو تا فاصله سه ، چهار سانتی متری تشخیص میده ، یه سنسور جلو ربات نصب شده یکی عقب و دوتای دیگه هم قسمت جلو سمت راست و چپ یه ماژول دریافت سیگنال از کنترل تلویزیون هم داره ( اون نیم کره سیاه رنگ ) که می تونین با استفاده از کنترل های موجود در بازار به اون دستور بدین .

 

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
word قابل ویرایش - قیمت 8700 تومان در 39 صفحه
87,000 ریال – خرید و دانلود
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد