بخشی از مقاله
خلاصه
در این مطالعه جهت روندیابی سیل در رودخانه، روش هیدرولوژیکی مبتنی بر روش ماسکینگام خطی پیشنهاد شده است که تعیین پارامترهای مجهول آن با بهینه سازی توسط الگوریتم ژنتیک انجام میشود. بر اساس مدل پیشنهادی برنامه کامپیوتری تهیه شده است که قادر به انجام محاسبات روندیابی سیل با دقت بالایی میباشد. در این تحقیق اطلاعات آماری رودخانه سیلاخور واقع در استان لرستان برای ارزیابی مدل پیشنهادی مورد استفاده قرار گرفته است. هیدروگرافهای خروجی محاسباتی حاصل از نتایج بهینه یابی با هیدروگرافهای خروجی مشاهداتی مورد مقایسه قرار گرفته است. نتایج بدست آمده از مدل پیشنهادی بیانگر دقت و همبستگی بالای آن میباشد.
-1 مقدمه
روندیابی سیل در رودخانه از اهمیت ویژهای در مهندسی آب برخوردار است. قابل ذکر است که روندیابی سیل کاربرد فراوانی در مسائل مربوط به پیش بینی سیل، طراحی مخازن، ساماندهی رودخانه، محاسبه ارتفاع سیل بندها، دیوارههای موازی رودخانهها و ... دارا میباشد. روشهای عمده روندیابی سیل به دو دسته روشهای هیدرولیکی و روشهای هیدرولوژیکی تقسیم بندی میشوند. روشهای هیدرولیکی مبتنی بر حل معادلات دیفرانسیل پیوستگی و مومنتوم میباشد. روشهای هیدرولیکی با وجود دقت بالا، به اطلاعات بسیار زیاد و هزینهبر از قبیل: مقاطع عرضی رودخانه، شیب بستر و ضرایب زبری نیاز دارد، دستیابی به این اطلاعات مستلزم عملیات نقشه برداری مفصل است که این امر همواره امکان پذیر نمیباشد.
روشهای هیدرولوژیکی مبتنی بر حل معادله پیوستگی و یک معادله دیگر است که اغلب ذخیره را به عنوان تابعی از دبیهای ورودی و خروجی در بازه مورد مطالعه در نظر میگیرد. روشهای هیدرولوژیکی مانند روش ماسکینگام بسیار ساده بوده و به اطلاعات مقاطع و شیب رودخانه نیازی ندارد، تنها به یک یا چند سری هیدروگراف ورودی و خروجی همزمان رخداده نیازمند است که این اطلاعات اغلب از طریق ایستگاههای آب سنجی در دسترس قرار میگیرد.
اطلاعات مذکور برای کالیبراسیون و محاسبه پارامترهای مربوطه به کار میرود که پس از کالیبراسیون میتوان روندیابی سیل را در یک بازه از رودخانه برای سایر سیلابها به راحتی انجام داد. پارامترهای مجهول در روندیابی هیدرولوژیکی سیل در رودخانه تک شاخهای به روش ماسکینگام خطی دو پارامتر . و ; است. در این تحقیق جهت محاسبه پارامترهای مجهول از روش بهینهیابی مبتنی بر الگوریتم ژنتیک استفاده شده است که با استفاده از ابزار نرم افزاری MATLABو جعبه ابزار الگوریتم ژنتیکِ آن، و برنامه نویسی در این محیط پارامترهای مجهول تخمین زده میشود. بدین ترتیب با استفاده از پارامترهای کالیبرهشده، پیش بینی روندیابی سیل در رودخانه برای سایر دورههای سیلابی امکانپذیر خواهد شد. این روش بر روی رودخانههای واقعیِ دارای اطلاعات آماری اعمال گردیده و با نتایج واقعی مورد مقایسه قرار گرفته است.
-2 مروری بر تحقیقات گذشته
روندیابی سیل به روش ماسکینگام در سال 1938 توسط مک کارتی ارائه گردید [1] و اولین بار توسط گروه مهندسان ارتش آمریکا در ارتباط با طرحهای کنترل سیل در حوزه رودخانه ماسکینگام در ایالت اوهایو به کار گرفته شد، از این رو به روش روندیابی ماسکینگام یا به اختصار به روش ماسکینگام معروف گردید. تخمین پارامترهای روش ماسکینگام توجه محققین بسیاری را به خود جلب کرده است که به شرح برخی از مطالعات انجام شده در این زمینه میپردازیم.
پرومال در سال 1994 با فرض ثابت بودن شیب سطح آب در طول یک بازه کوچک از کانال و برقراری جریان ماندگار بین عمق در وسط بازه و دبی در مقطعی در پایین دست آن، روش ماسکینگام با پارامترهای متغییر را برای روندیابی موج سیل در کانالهای منشوری با مقطع ثابت و جریانهایی که معادلات مقاومت بر آنهاحاکم است، بطور مستقیمً از معادلات سنت ونانت بدست آورد 3]،. [2 کارایی این روش برای شرایط واقعی توسط پرومال و همکارانش در سال2001 به کمک دادههای روزانه و ساعتی شش بازه از سه رودخانه در استرالیا و قسمتی از شبکه انهار رودخانه تاین در انگلستان بررسی شد.
با توجه به نتایج بدست آمده، این روش در عمل از کارایی مناسبی برخوردار بوده و با حداقل اطلاعات نقشهبرداری و بدون نیاز به واسنجی برای محاسبه زبری یا تعیین پارامترهای روندیابی، نتایج قابل قبولی ارائه میدهد. [4] موهان در سال 1997 مدلی را بر مبنای الگوریتم ژنتیک - GA - به منظور تخمین پارامترهای ماسکینگام غیرخطی ارائه نمود. نتایج نشان میدهد هیدروگراف جریان خروجی حاصل از روش GA با هیدروگراف جریان خروجی مشاهداتی نسبت به روشهای ارائه شده از سوی سایر محققان انطباق بالاتری را دارا میباشد و این بیانگر عملکرد مطلوب مدل پیشنهادی میباشد. [5]
پرومال و رانگ راجو در سال 1998 بر اساس معادلات سنت ونانت روشی را برای روندیابی جریان غیرماندگار ارائه نمودند که مشابه فرمول مورد استفاده در روش ماسکینگام با پارامترهای متغییر بوده، و برای روندیابی از هیدروگراف اشل استفاده میکند. در این روش هیدروگراف دبی نیز بطور همزمان با هیدروگراف اشل روندیابی شده محاسبه میگردد. 7]،[6 روندیابی جریان به روش ماسکینگام متداول تنها بر اساس رابطه بین ذخیره کانال وتراز آب رودخانه صورت میگیرد و ذخیره ساحلی را شامل نمیشود.
بیرخید و جیمزدر سال 2002 طی تحقیقی بر حوضه رودخانه سبی در جنوب آفریقا روندیابی جریان را به روش ماسکینگام با در نظر گرفتن ذخیره ساحلی مورد مطالعه قرار دادند. آنها در این بررسی با استفاده از فرم غیر خطی معادلات ذخیره در روش ماسکینگام و لحاظ کردن نفوذپذیری ساحل، ضرایب مورد نیاز برای روندیابی را محاسبه کردند. نتایج نشان میدهد در مواردی که ساحل رودخانه نفوذپذیر باشد ولی از آن صرف نظر شود پارامترهای تخمینی بویژه پارامتر ; غیر واقعی می گردد. [8]
داس در سال 2004 به منظور تخمین پارامترهای مدل ماسکینگام خطی و غیرخطی از یک الگوریتم تکرار شونده، بر مبنای مینیمم نمودن خطای هیدروگراف محاسباتی نسبت به هیدروگراف مشاهداتی بهره برد. [9] سامانی و شمسی پور در سال 2004 برای روندیابی سیل در رودخانه های چند شاخه ای با بکارگیری روش ماسکینگام خطی مدلی را ارائه کردند که در آن برای تخمین پارامترهای موردنیاز روندیابی از تکنیک بهینه یابی غیرخطی - پاول - برای سه حالت مختلف: -1 رودخانه تک شاخه ای -2 رودخانه سه شاخه ای -3 رودخانه با حوضه میانی فاقد آمار استفاده کردند. در مقایسه بین نتایج مدل پیشنهادی و روشی که در آن از یک مدل هیدرولیکی عددی برای حل معادلات سنت ونانت استفاده شده انطباق بالایی وجود داشت که بیانگر عملکرد مطلوب مدل ارائه شده در این تحقیق می-باشد. [10]
-2-3 تخمین پارامترها
در رودخانه مورد بررسی مقادیر دبی ورودی I و دبی خروجی واقعی الگوریتم ژنتیک برای تعیین پاسخ بهینه . و ; به شرح زیر است: . و ; ای را به عنوان بهینهترین پاسخ اعلام مینماید که به ازای آن مقدار تابع زیر کمترین مقدار گردد. به بیان واضحتر به ازای این پارامترهای بهینه هیدروگراف خروجی را از رابطه - 1 - محاسبه میکنیم. سپس مجموع مربعات تفاضلات هیدروگراف خروجی واقعی و محاسبه شده را از رابطه زیر به دست میآوریم که این مقدار برای . و ; بهینه نسبت به سایر مقادیر ممکن برای پارامترهای . و ; کمترین مقدار را خواهد داشت.
بنابراین در بهینه-یابی هدف حداقل کردن تابع هدف - - - میباشد. بهینه یابی توسط الگوریتم ژنتیک به مشتق گیری از تابع هدف احتیاجی ندارد که این مسئله موجب سهولت در استفاده از آن میشود همچنین سرعت محاسبات افزایش مییابد. برنامه با انتخاب مجموعه نقاطی در محدوده از پیش تعیین شده برای پارامترها توسط کاربر، روند کار خود را آغاز میکند تا در نهایت بهترین دسته جواب حاصل شود. ضریب همبستگی که آن را با R2 نمایش میدهیم ملاکی برای نشان دادن میزان انطباق بین نقاط هیدروگراف خروجی محاسبه شده و هیدروگراف خروجی واقعی با استفاده از نتایج حاصل از بهینهیابی می باشد. هرچه مقدار ضریب همبستگی به عدد یک نزدیکتر باشد بیانگر آن است که مسئله بهینه یابی شده از انطباق بالاتری نسبت به واقعیت برخوردار است. [12]