بخشی از مقاله
ریاضیات عموما مطالعه الگوی ساختار، تحول، و فضا تعریف شده است؛ بصورت غیر رسمی تر، ممکن است بگویند مطالعهاعداد و اشکال است.تعریف ریاضیات بر حسب وسعت دامنة آن و نیز بسط دامنة فکر ریاضی تغییر کرده است.
ریاضیات زبانی خاص خود دارد،که در آن به جای کلمات و علائم نقطه گذاری از اعداد و نمادها استفاده میشود. در منظر صاحبان فکر، تحقیق بدیهیات ساختارهای مجرد تعریف شده، با استفاده از منطق و نماد سازی ریاضی میباشد.
نخستین اعداد ثبت شده خطوطی بودند که روی یک چوب کشیده میشدند،که اصطلاحا آنها را چوبخط مینامیدند.این خطوط به شکل دسته های کوچک دو یا پنج تایی کشیده میشدند.سرانجام به این دسته ها نمادهای خاصی اختصاص داده شد(5،2 و غیره)و یک دستگاه حساب ایجاد شد.
ریاضیدانان نمادهای خاصی را به جای کلماتی از قبیل به اضافه و مساوی است با وضع کردند،همچنین کلمات خاصی را برای بیان مفاهیم جدید ابداع کردند.
چنانکه زمانی آن ار علم عدد ، زمانی علم فضا ، گاه علم کمیات ، و زمانی علم مقادیر متصل و منفصل خوانده اند.ریاضیات درباره حساب ، هندسه ، جبر و مقابله بحث می کند که ما در اینجا به سراغ تاریخ هر یک از آنها می رویم.
ساختارهای بخصوصی که در ریاضیات مورد تحقیق و بررسی قرار میگیرند اغلب در علوم طبیعی منشاء دارند، و بسیار عمومی در فیزیک، ولی ریاضیات ساختارهای دلایلی را نیز بررسی می نماید که بصورت خالص در مورد باطن ریاضی است، زیرا ریاضیات می توانند برای مثال، یک عمومیت متحد شده را برای زیر-میدانهای متعدد، یا ابزارهای مفید را برای محاسبات عمومی، فراهم نماید. در نهایت، ریاضیدانان بسیاری در مورد مطالبی که مطالعه می نمایند که منحصرا دلایل علمی محض داشته، ریاضیات را بصورت هنری برای پروراندن علم، صرف نظر از تجربی یا کاربردی، می نگرند.
حساب ، علم اعداد است. واژه انگلیسی حساب ، از کلمه ای یونانی به معنای اعداد گرفته شده است.
در آغاز شهرنشینی ، انسان گوسفندان ، گاوها و سایر حیوانات خود را با انگشتانش می شمرد. در واقع کلمة دیژیت که برای شمارش اعداد از 0 تا 9 به کار می رود، از یک کلمة لاتین به معنای انگشت گرفته شده است.
بعدها انسان با علامت زدن روی چوب یا درخت ، اشیاء را می شمرد. اما این روش به زودی جای خود را به استفاده از علامتهایی باری هر یک از اعداد داد.
هندسه مطالعه انواع مختلف اشکال و خصوصیات آنهاست. همچنین مطالعه ارتباط میان اشکال ، زوایا و فواصـل است.
تاریخچه
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.
سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو میکرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی میباشد.
قدیمیترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی میباشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشتهاند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست.
قریب هزار سال پس از نابودی فرهنگ قدیم مصر و محو تمدن آَشور، یونانیان از روی مقدمات پراکنده و بیشکل آنها علمی پدید آوردند که در واقع به عالیترین وجه مرتب و منظم گردیده و عقل و منطق را کاملاً اقناع مینمود.
نخستین دانشمند معروف یونانی طالس ملطلی (639_548ق.م) است که در پیدایش علوم نقش مهمی بعهده داشته و میتوان ویرا موجد علوم فیزیک ، نجوم و هندسه «تشابه» به او کاملاً بیاساس است.
در اوایل قرن ششم ق.م. فیثاغورث (572_500 قبل از میلاد) از اهالی ساموس یونان کمکم ریاضیات را بر پایه و اساسی قرار داد و به ایجاد مکتب فلسفی خویش همت گماشت. فیثاغورثیان عدد را بخاطر همآهنگی و نظمی که دارد اساس ومبدأ همه چیز میپنداشتند و بر این عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود.
پس از فیثاغورث باید از زنون فیلسوف و ریاضیدان یونانی که در 490ق.م در ایلیا متولد شده است نام ببریم.
در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس فضاهایی متفرق آن زمان را گردآوری کرد و در حقیقت همین قضایا است که مبانی هندسة جدید ما را تشکیل میدهند.
در قرن چهارم قبل از میلاد افلاطون در باغ آکادموس در آتن مکتبی ایجاد کرد که نه قرن بعداز او نیز همچنان برپا ماند. وی ریاضیات مخصوصاً هندسه را بسیار عزیز میداشت، تا جائی که بر سردر مکتب خود این جمله را حک کرده بود: «هرکس هندسه نمیداند به اینجا قدم نگذارد».
این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت و چندی بعد منجم و ریاضیدان معاصر وی ادوکس با ایجاد تئوری نسبتها نشان داد که کمیات اندازه نگرفتنی که تا آن زمان در مسیر علوم ریاضی گودالی حفر کرده بود هیچ چیز غیر عادی ندارد و میتوان مانند سایر اعداد قواعد حساب را در مورد آنها بکار برد.
در این احوال اسکندر کشورها را یکی پس از دیگری فتح میکرد و هرجا را که بر روی آن انگشت مینهاد مرکزی از برای پیشرفت تمدن یونانی میشد.
پس از مرگ این فاتح مقتدر در 323ق.م و تقسیم امپراطوری عظیم او، مصر بدست بطلیموس افتاد و امپراطوری بطالسه را تشکیل داد. بطالسه که اسکندریه را به پایتختی برگزیده بودند تمام دانشمندان را بدانجا پذیرفتند و همین دانشمندان در صدد ایجادکتابخانة بزرگی در این شهر ساحلی برآمدند و به توسعه و تکمیل آن همت گماشتند.
اکنون به زمانی رسیدهایم که بایستی آنرا عصر طلائی ریاضیات یونان نامید. اهمیت فوقالعاده این دوره به سبب ظهور سه عالم بزرگ ریاضی یعنی اقلیدس ، ارشمیدس و آپولونیوس است که هم در دوران خود و هم برای قرون بعد از خویش شهرتی عالمگیر کسب نمودند.
در قرن دوم ق.م نام تنها ریاضیدانی که بیش از همه تجلی داشت ابرخس یا هیپارک بود. این ریاضیدان و منجم بزرگ که بین سالهای 161تا 126ق.م در رودس متولد شد گامهای بلند و استادانهای در علم نجوم برداشت و مثلثات را نیز اختراع کرد.
هیپارک نخستین کسی بود که تقسیمبندی معمولی بابلیها را برای پیرامون دایره پذیرفت. به این معنی که دایره را به 360 درجه و درجه را به 60 دقیقه و دقیقه را نیز به 60 قسمت برابر تقسیم نمود و جدولی تابع شعاع دایره بدست آورد که وترهای بعضی از قوسها را میداد و این قدیمیترین جدول مثلثاتی است که تاکنون شناخته شده است.
در سال 47ق.م که ژول سزار نیروی دریایی مصررا آتش زد، در کتابخانه بزرگ اسکندریه نیز حریقی ایجاد شد که قسمت اعظم آنرا نابود ساخت. بالاخره در سال 30ق.م به هنگام امپراطوری ملکه کلئوپاترا کشور مصریکی از ایالات امپراطوری روم شد.
در این دوره کوتاه از کشفیات جدید خبری نبود و دانشمندان متوسطی نظیر بطلیموس، منلائوس و باپوس نیز که ظهور کردند تنها به تعلیم و انتشار آثار قدما اکتفا نمودند.
بطلیموس که به احتمال قوی با امپراطوران بطالسه هیچگونه ارتباطی ندارددر تعقیب افکار هیپارک کوشش بسیار کرد.
کتاب مشهور او به نام اصلی«ترکیب ریاضی» شامل یک دستگاه هیأت بیان حرکت دورانی اجسام سماوی و یکدورة کامل مثلثاتکروی و مستقیمالخط و توضیح و محاسبة نمودهای حرکت بومی است. این کتاب را درسال 827 از یونانی به عربی ترجمه کردند ونام آنرا مجسطی یعنی «بسیار بزرگ» نهادند و از آن پس به همین نام باقی ماند.
منلائوس که در اواخر قرن اول میلادی در اسکندریه میزیست به امر امپراطور دومی سین کتابی تألیف کرد که قضیه معروف منلائوس دربارة چهارضلعی محاطی در آن ذکر شده است.
پاپوس که دورة زندگانیش در حدود 350 میلادی بوده است دارای کتابی است به نام «مجموعة ریاضیات». هدف وی از تدوین این کتاب آن بوده است که به اختصار نتایجی را که از بدو پیدایش علم هندسه تا آن زمان حاصل شده بود برای خود بیان نماید. با این حال در موارد بسیار احکام جدید و جالبی که از اکتشافات خودش میبود و بر آن افزود. مسألة معروف پاپوس که در همه کتابهای هندسة ما وجود دارد و قضیه بسیار مهم تعیین مرکز نقل سطوح و احجام که برخلاف واقع آنرا به گولدن نسبت دادهاند.
در این احوال هندوستان به منزلة یک مرکز جدید روشنفکری توسعه مییافت و چنین به نظر میرسید که علم بدانجا فرار کرده و یا به عبارت بهتر فقط آنجا را مقام خود ساخته است. زیرا سابق براین در زمان یونانیها نیز در آنجا وجود داشته است. علوم هندی بیش از علوم تمام ممالک دیگر که تاکنون از ایشان سخن گفتیم در خدمت مذهب بود وشامل بعضی مقدمات علم طب یعنی همانقدر که برای ساختن مشروبات مقدس کفایت میکردو مختصری از علوم نجومیعنی درست همان اندازه که برای تشکیل تقاویم مذهبی مورد نیاز است و اندکی هندسه، مرکب از بعضی طرق عملی که برای ساختن مسجد و محراب لازم است بیش نبود.
در نخستین قرون تاریخ چهار ریاضیدان مشهور در این کشور وجود داشت که عبارت بودند از:
آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده میشود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا «لیلاواتی» گذارده بودندکه معنی دلبری و افسونگری دارد! با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.
در سال 622م که حضرت محمدصلی الله علیه و آله وسلماز مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند و این توسعهطلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.
در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بینالمللی گردید.
از ریاضیدانان بزرگ اسلامی یکی خوارزمیمیباشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.
وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اولرا بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر مینامیم، انجام داده است.
دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوماست.
قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر میبردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمییافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار میرفت اصلاح کرد. این دستگاه همان چرتکه بود
.
برجستهترین نامهائی که در این دوره ملاحظه مینمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضیدان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی میباشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.
در قرن پانزدهم ترقی فنی، پیشرفت علوم نظری را تحتالشعاع خود را قرار داد. اختراع چاپ در سال 1440 بوسیله گوتنبرگ سبب آن شد که تعداد کتاب در جهان با سرعتی صاعقهآسا رو به افزایش نهد و زمینه برای مطالعة منابع علمی گذشته که کم و بیش فراموش شده بود مهیا گردد.
در قرون پانزدهم و شانزدهم دانشمندان ایتالیائی و شاگردان آلمانی آنها در حساب عددی جبر و مکانیک ترقیات شایان نمودند. تارتاگلیا و کاردان در ایتالیا سنن ریاضیدانان عهد عتیق را از سر گرفتند.
رژیمن تانسوس آلمانی که از جمله بزرگترین منجمان این دوره است کتاب قدیمیترین کتاب جالبی دربارة مثلثات نگاشت. این کتاب قدیمیترین کتاب کامل مثلثات است که در مغربزمین انتشار یافت. همچنین ژانورتر از اهالی نورنبرگ آلمان که به هندسه قدما به خوبی مسلط بود راهحل عالمانه و بدیعی از یکی از مسائل ارشمیدس که موضوع آن تقسیم کره به کمک صفحه به نسبت معلومی بود بدست داد.
وی در تمام قسمتهای ریاضی بخصوص مثلثات تألیفات بسیار دارد.
ریاضیدانان فرانسوی در اوایل قرن شانزدهم عموماً مادون ایتالیائیها بودند. مشهورترین آنها یکی اورنس فین است که در هندسه بویژه در موردتربیع دایره اکتشافات تازهای کرد. دیگر پییرلارامه موسوم به راموس است که بیشتر از لحاظ آثار فلسفی خود شهرت یافت. با وجود این به ریاضیات نیز علاقه فراوان نشان داد تا جائی که کتابی در ستایش ریاضیات و کتاب دیگری در مقدمات حسابو هندسهتألیف کرد. بالاخره کاندال را باید نام ببریم که در مطالعات مخصوص به چند وجهیها تخصص یافت.
در اواخر قرن شانزدهم در فرانسه شخصی بنام فرانسواویت (1603_1540م) به پیشرفت علوم ریاضی خدمات ارزندهای نمود. وی یکی از واضعین بزرگ علم جبر و مقابلة جدید و در عین حال هندسه دان قابلی بود. مثلثات جدید فقط متکیبر زحمات اوست. هر چند بسیاری از قدما و دانشمندان جدید باری پایهگذاری اساس آن زحماتی کشیدهاند، اما ترقی آن کاملاً مرهون وی است. او اولین کسی است که مثلث کروی را با معلوم بودن سه ضلع آن حل کرد و در عین حال نخستین ریاضیدانی است که برای حل مسأله ترسیم دایره مماس بر سه دایرة دیگر راهحل هندسی بدست داد و ریشههای معادلة درجه چهارم را ساخت.
کشور دانش خیز هلند نیز در اواخر این قرن مهد آزادی و یکی از مراکز مهم علمی جهان شده بود. آدرینرومن و سپس آدرین متیوس مقدار تقریبی عدد پی را محاسبه کردند و یکی دیگر از هموطنان آنان بنام وان سولن تا 30 رقم اعشار آن را بدست آورد.
همچنین انگلستان که در آغاز قرن شانزدهم برای پیشرفت علم جبرکوشیده بود اینک با کشف لگاریتم بوسیله جان نپر تئوری فن محاسبة عددی را یک قدم قطعی بجلو برد.
کوپرنیک(1543_1473) منجم بزرگ لهستانی در اواسط قرن شانزدهم در کتاب مشهور خود بنام «دربارة دوران اجسام آسمانی» که همزمان با مرگش انتشار یافت تصویری از منظومة شمسی بدست داد که امروز هر دانش آموزی با آن آشناست:
1. مرکز منظومة شمسی، خورشید است نه زمین.
2. در حالی که ماه بگرد زمین میچرخد، سیارات دیگر، همراه با خود زمین بگرد خورشید میچرخند.
3. زمین در هر 24 ساعت یکبار حول محور خود میچرخد نه کرة ستارههای ثابت.
پس از مرگ کوپرنیک در قلب اروپا، در کشور دانمارک مردی بنام تیکو براهه متولد شد که کارهای او پایه و اساس انقلاب قریب الوقوع نجوم گردید. وی نشان داد که حرکت سیارات کاملاً با نمایش و تصویر دایرههای هممرکز وفق نمیدهد. از آنجا که تیکو براهه بیشتر به رصدهای مستقیم و اندازهگیری سرگرم بود، هیچ کوشش برای تجزیه و تحلیل نتایج خود انجام نداد و این کار به یوهان کپلر که در سال آخر زندگی تیکو براهه دستیار وی بود محول گشت.
پس از سالها کار، وی به نخستین کشف مهم خود رسید و چنین یافت که سیارات در حرکت خود به گرد خورشید یک مدار کاملاً دایره شکل نمیپیمایند بلکه همة آنها بر روی بیضیهایی حرکت میکنند که خورشید در یکی از دو کانون آنها قرار دارد.
همچنین وی در نخستینبار اصل ماند (اصل جبر) را در مکانیک حدس زد که بعدها بوسیلة گالیله صورت تحقیق یافت.
قرن هفدهم در تاریخ ریاضیات قرنی عجیب و معجزهآسا است. از فعالترین دانشمندان این قرن کشیشی پاریسی بود بنام مارن مرسن که میتوان وی را گرانبهاترین قاصد علمی جهان دانست. این شخص اطلاعات لازم را به دانشمندان میداد و به ملاقات ایشان میرفت و هر هفته آنان را در کلبه خود جمع میکرد و وسیله تبادل افکارشان را فراهم میساخت. و حتی برای اینکه بتواند آثار علمای مزبور را منتشر کند، شخصاً چاپخانهای تهیه کرد و رابط مابین گالیله،دکارت،فرما و دیگران شد. به مدد همین اجتماعات بود که کولیر توانست آکادمی علوم پاریس را در سال 1666 تأسیس کند.
در سال 1609گالیله ریاضیات و نجوم را در دانشگاه پادوا در ایتالیا تدریس میکرد. وی یکی از واضعین مکتب تجربی است.
مخالفت او با اصول ارسطو اشکالات بزرگی برای وی تولید کرد و میدانیم که در سال 1663 وی در سن هفتاد سالگی در برابر دادگاه تفتیش عقاید حاضر شد و چون بعد از کوپرینک اول کسی بود که حرکت زمین را به دور خورشید تأیید کرد محکوم گردید. وی قانون سقوط اجسام را به دست آورد و مفهوم شتاب را تعریف کرد و آن عبارت است از ازدیاد سرعت در هر ثانیه و همچنین قوانین حرکت گلوله روی سطح افقی و سطح شیبدار نیز مطالعه نمود. گالیله موفق به اختراع دوربینی گردید که هنوز هم نام او را همراه دارد.
در همان اوقات که گالیله نخستین دوربین خود را به سوی آسمان متوجه نمود در 31 مارس 1596در تورن فرانسه رنه دکارت بدنیا آمد.
وی به زودی با مارن مرسسن که یکی از همکلاساش بود دوست شد و پس از یکدوره فعالیتهای نظامی و مسافرتهای متعدد به پاریس و هلنددر سال 1650 درسوئد زندگی را بدرود گفت. دکارت در میان همه کارهایش از عرضه نمودن افکار فلسفی خود در روابط بین انسان و طبیعت غفلت ننمود. کتاب وی به نام دیوپتریک که موضوع آن مسائل مربوط به مبحث نور بویژه انکسار میباشد جزو برجستهترین آثار اوست.
نام ریاضیدان بزرگ سوئیسی «پول گولدن» را نیز باید با نهایت افتخار ذکر کرد. شهرت وی بخصوص بواسطه قضایای مربوط به اجسام دوار است که نام او را دارا میباشد و در کتابی به نام «مرکز ثقل» ذکر شده است.
دیگر از دانشمندان برجسته قرن هفدهم پییردوفرما ریاضیدان بزرگ فرانسوی است که در سال 1601 در بومون دوکانی متولد شد و در 1665 در کاستر درگذشت.
وی مطالعات عمیق و جالبی درباره ریاضیات مطلق و نور کرد. یکی از برجستهترین آثار او «تئوری اعداد» است که وی کاملاً بوجود آورنده آن میباشد. در هندسه، فرما در همان زمان دکارت و مستقل از او مبانی هندسه تحلیلی را کشف کرد، گذشته از آن وی از دکارت نیز تجاوز نمود و اولین کسی است که این علم را در مورد فضای سه بعدی بکار برد.
تجسمات رفیع و استادانه او در حساب عالی است تا جائی که استدلال بعضی از قضایای او فقط یک قرن بعد بوسیله کسانی از قبیل اولرولاگرانژ باز یافته شد و یکی از قضایای او را حتی امروز نیز نتوانستهاند ثابت کنند.
ریاضیدان بزرگ دیگری که در این قرن به خوبی درخشید ژیرار دزارک فرانسوی میباشد که بیشتر به واسطه کارهای درخشانش در هنر معماری شهرت یافته بود. دزارک در هندسه آثاری ارزشمند دارد ومیتوان گفت که وی راه به سوی آنچه که «هندسه جدید» نامیده میشود بازکرد. او نخستین کسی است که درباره اشکال هندسی تنها به روابط متری مابین کمیات اکتفا نکرد و خواص تصویری را نیز در نظر گرفت و هندسه وضعی را پدید آورد.
و بالاخره ریاضیدان دیگر فرانسوی یعنی روبروال را باید نام ببریم که بواسطه ترازوی مشهوری که نام او را همراه دارد همه جا معروف است.
در اواسط قرن هفدهم کمکم مقدمات اولیه آنالیز عناصر بینهایت کوچک در تاریکی و ابهام بوجود آمد و رفتهرفته سر و صدای آن به گوش مردم رسید و فکرها را بدان سوی متوجه ساخت. این نکته را نیز بایستی متذکر شد که مرکز ثقل علمی اروپا تغییر کرده بود
:ایتالیا که مدتهای مدید درخشیده بود کمکم به خاموشی میگرائید. آلمان بلافاصله بعد از کپلر دچار جنگهای سی ساله شد و دیگر تا هنگام درخشیدن لایب نیتس گفتگوئی از آن در میان نبود.انگلستاندر انتظار پیدایش موجود مافوق بشری همچون نیوتن بود و کشور هلند به انتظار هویگنس تنها به تربیت مردان علاقمند و متبحر اکتفا میکرد. در این احوال کشور فرانسه اولین مقام علمی را اشغال کرده بود. کدام کشور میتوانست مدعی وجود کسانی همچون دکارت،فرما، دزارک ، روبروال و پاسکال باشد.