بخشی از مقاله
كار و انرژي
تا بحال در مورد دینامیك بطور مفصل بر حسب نیرو، اندازه حركت و … صحبت كردهایم.
آنچه تا بحال میكردهایم چنین بوده است كه نیروی یك عامل طبیعی را بر ذره مورد بحث خود بدست میآوردیم (با اندازهگیری و …) سپس از روی این نیروی طبیعی، شتاب ذره را بدست میآوردیم. آنگاه با دانستن شرایط اولیه مسأله یعنی و حركت ذره را برای زمانهای بعدی پیشبینی میكردیم.
اما راه دیگری امكانپذیر نیست؟ نمیتوان جای بردار از كمیت اسكالری استفاده كرد؟ یا اینكه اصلاً را بدست نیاوریم بلكه صرفاً رابطه بین و را بدست آوریم بدون آنكه بخواهیم بدانیم كه هر كدام بر حسب زمان چه مقادیری دارند یعنی كه سرعت وقتی مكان ذره باشد چه برداری میشود: در خیلی از مسایل ما به این نیاز داریم و گاهی هم صرفاً همین برایمان مهم است. اگر از روش قدیمی استفاده كنیم میبایست و را بر حسب بدست آوریم آنگاه در این بین پارامتر را حذف كنیم تا با هم مستقیم رابطه یابند.
سؤالهای مختلفی پیش میآید مثلاً این كه آیا فرآیند همواره امكانپذیر است؟ در صورتی میشود چنین رابطهای را به طور مناسب برقرار دانست كه بعضی خواص ریاضی را و داشته باشند تا حالت تابع داشته باشد یعنی اینكه . ممكن است در دو زمان و ، ها یكی باشند ولی سرعتها فرق كنند. مثلاً وقتی پرتابهای را به سمت بالا پرتاب میكنیم اگر موقع رفت در ارتفاعی خاص سرعتش باشد در موقع برگشت در همان ارتفاع سرعتش است و به ازای یك ، 2 تا داریم. اما جالب اینجاست كه اندازه در هر دو حالت یكسان میماند.
پس شاید بهتر باشد را بدست آوریم یعنی اندازه سرعت را. خواهیم دید كه در خیلی از مسایل این است كه مهم است نه بردار .
نكته دیگر آن كه آیا به ازای همه ها لزوماً وجود دارد. یعنی اصلاً به همه نقاط فضا میتوان دسترسی یافت؟ این امری است كه قطعاً در یك حركت اتفاق نمیافتد زیرا مسیر حركت یك ذره صرفاً منحنی است ولی مجموعهای از تمام حركات ممكن كه از یك نوع نیروی طبیعی نتیجه میشوند آیا میتوانند تمام فضا را بپوشانند و اگر چنین كردند اگر در نقطهای در مسیر همدیگر را قطع كردند آیا لزوماً در دو مسیر اندازه سرعتها یكسان خواهد بود .
اینها سؤالات و موضوعاتی هستند كه ما را به سمت تعاریفی جدید پیش میبرند. آنكه سعی كنیم یك اثر طبیعی را مثلاً با یك تابع اسكالر نشان دهیم جای آنكه بردار نیروی آن را در فضا مشخص كنیم. خوب ببینیم چه میشود؟
کار نيروي متغير
فرمول در صورتي صحيح است که نيروي F مقدار ثابتي باشد و يا اگر
متغير است مقئار متوسط نيرو برابر F است در حالت کلي کار نيروي متغير مکان F در
تغيير مکان از تا از رابطه به دست مي آيداگر نمودار نيرو بر
حسب جابجايي معلوم باشد کار انجام شده در هر جابجايي با جمع جبري مساحتهاي سطوح
محصور بين نمودار نيرو و محور جابجايي برابر است
انرژی جنبشی :
در بررسی حرکت اجسام معمولا دو نوع انرژی بیشتر مورد توجه قرار میگیرد. انرژی پتانسیل که ناشی از مکان قرار گیری جسم نسبت به سطحی که به عنوان سطح با پتانسیل صفر فرض میشود و انرژی جنبشی که هر جسم به دلیل حرکت دارای این نوع انرژی است. یعنی اگر جسمی ثابت باشد، انرژی جنبشی آن صفر خواهد بود. مخصوصا در مواردی که نیروهای موجود در مسئله از نوع پایستار باشند در این صورت انرژی مکانیکی بقا دارد و لذا اگر انرژی جنبشی جسم افزایش پیدا کند، انرژی پتانسیل کاهش مییابد و برعکس کاهش انرژی جنبشی با افزایش انرژی پتانسیل همراه است.
قضیه کار و انرژی
معمولا بیشترین کاربرد انرژی جنبشی در بحث حرکت در قضیه کار و انرژی ظاهر میشود. لازم به یادآوری است که هرگاه در اثر اعمال نیرویی ، یک جسم از محل اولیه خود جابجا شود، در این صورت میگویند که نیرو بر روی جسم کار انجام میدهد. بنابراین قضیه کار و انرژی بیان میکند که هرگاه بر روی جسمی کار انجام شود، انرژی جنبشی آن تغییر میکند. به عبارت دیگر تغییرات انرژی جنبشی با انجام کار انجام شده بر روی جسم برابر است.
قضیه کار و انرژی قانون جدید و مستقلی از مکانیک کلاسیک نیست. این قضیه برای حل مسائلی مفید است که در آنها کار انجام شده توسط نیروی برایند به راحتی قابل محاسبه است و ما میخواهیم سرعت ذره را در مکانهای خاصی پیدا کنیم. آنچه بیشتر اهمیت دارد این واقعیت است که قضیه کار و انرژی نقطه آغازی برای یک تعمیم جامع در علم فیزیک است. چون در بسیاری از موارد بهتر است کار انجام شده توسط هر نیرو را جداگانه محاسبه کرده و نام خاصی برای کار انجام شده توسط هر نیرو قائل شویم. لذا آنچه قبلا در مورد معتبر بودن این قضیه در مواردی که به صورت کار انجام شده توسط نیروی برایند تعبیر میکنیم، مشکلی ایجاد نمیکند.
یکای انرژی جنبشی
انرژی جنبشی یک جسم در حال حرکت با کاری که میتواند انجام دهد تا به حال سکون برسد، متناسب است. این نتیجه اعم از این که نیروهای اعمال شده ثابت یا متغیر باشند، صادق است. بنابراین یکای انرژی جنبشی و کار یکسان خواهند بود و انرژی جنبشی مانند کار یک کمیت اسکالر است. انرژی جنبشی گروهی از ذرات صرفا از انرژی جمع اسکالر انرژیهای جنبشی تک تک ذرات آن گروه بدست میآید.
انرژی جنبشی جسم صلب
معمولا در مورد حرکت جسم صلب به عنوان سیستمی از ذرات ، دو نوع انرژی جنبشی میتوانیم تعریف کنیم. این دو نوع انرژی که بواسطه نوع حرکت به دو صورت متفاوت میتواند وجود داشته باشد.
انرژی جنبشی انتقالی
گفتیم که انرژی کمیتی اسکالر است. بنابراین در مورد یک سیستم متشکل از چند ذره ، انرژی جنبشی کل برابر با مجموع انرژی جنبشی تک تک ذرات خواهد بود. اما در مورد یک جسم صلب که تعداد ذرات خیلی زیاد است، نقطهای به عنوان مرکز جرم تعریف میشود که نماینده کل جسم صلب است. بنابراین انرژی جنبشی انتقالی نیز به صورت نصف حاصلضرب جرم جسم صلب در مجذور سرعت مرکز جرم تعریف میشود.
انرژی جنبشی دورانی
جسم صلبی را در نظر بگیرید که با سرعت زاویهای ω حول محوری که نسبت به یک چارچوب لخت خاص ثابت است، میچرخد. هر ذره این جسم در حال دوران مقدار معینی انرژی جنبشی دارد. چون تعداد این ذرات در جسم صلب زیاد است، لذا کمیتی به نام لختی دورانی تعریف میشود. لختی دورانی به صورت مجموع جملاتی تعریف میشود که هر جمله با حاصل ضرب جرم یک ذره از جسم صلب در مجذور فاصله عمودی ذره از محور دوران برابر است. بنابراین انرژ ی جنبشی دورانی جسم صلب که بخاطر دوران حاصل میشود، برابر است با نصف حاصل ضرب لختی دورانی جسم صلب در مجذور سرعت زاویهای.
این رابطه شبیه انرژی جنبشی انتقالی جسم است. یعنی سرعت زاویهای مانسته سرعت خطی است و لختی دورانی مانسته جرم لختی یا جرم انتقالی است. هر چند جرم یک جسم به محل آن بستگی ندارد، ولی لختی دورانی به محوری که جسم حول آن میچرخد، بستگی دارد. در واقع میتوان گفت که انرژی جنبشی دورانی همان انرژی جنبشی انتقالی معمولی تمام اجزای جسم است و نوع جدیدی از انرژی نیست. انرژی جنبشی دورانی در واقع راه مناسبی برای بیان انرژی جنبشی هر جسم صلب در حال دوران است. انرژی جنبشی دورانی جسمی که با سرعت زاویهای معین میچرخد، نه تنها به جرم جسم بستگی دارد، بلکه به چگونگی توزیع جرم آن نسبت به محور دوران نیز وابسته است.
کار :
آنچه از واژه کار در اذهان عمومی وجود دارد، با آنچه که در علم فیزیک به عنوان کار تعریف میشود، تفاوت دارد. در نظر عامه مردم هرگونه تلاش یا فعالیت را که از طرف یک شخص انجام میشود، کار میگویند، گو اینکه نتیجه این عمل مثبت ، منفی یا بی نتیجه باشد. اما از نظر علم فیزیک عامل انجام کار نیرو است و تنها در شرایط خاصی که عمل نیرو منجر به جابجایی جسم شود، میتوان به عمل نیرو واژه کار را اطلاق نمود. بنابراین اگر نیرویی بر یک جسم وارد شده ، ولی نتواند آن را جابجا کند، کار انجام یافته توسط نیرو صفر خواهد بود.
به عنوان مثال فرض کنید یک سنگ بسیار بزرگی در یک محل قرار داده شده است. حال از یک فرد خواسته میشود که این سنگ بزرگ را جابجا کند. فرد هر چه نیرو وارد میکند و به اصطلاح هرچه زور میزند، نمیتواند سنگ را جابجا کند. در این حالت علم فیزیک میگوید که این فرد هیچ کاری انجام نداده است. در صورتی که از نظر عمومی وی کار انجام داده است. لذا واژه کار در علم چیز متفاوت از واژه کار در اذهان عمومی است.
رابطه کار
فرض کنید که جسمی به جرم m در یک نقطه معین قرار دارد. بر این جسم نیروی ثابت F را به مدت معین t وارد کرده و آن را در راستایی که با امتداد نیرو زاویه حاده θ میسازد، به اندزه r جابجا میکنیم. در این صورت مقدار کار انجام شده بر روی جسم از رابطه زیر حاصل میشود.
W= F. r= FrCosθ
در رابطه فوق F و r کمیتهای برداری هستند و علامت نقطه در وسط آن بیانگر ضرب نقطهای ، ضرب عددی یا اسکالر است. همچنین W بیانگر کار انجام شده میباشد.
محاسبه یکای کار
یکای کار را میتوان از رابطه W=F.r حساب کرد. اگر برای سادگی فرض کنیم که بردار r در راستای بردار F باشد، در این صورت مقدار کار با حاصلضرب معمولی مقادیر عددی دو بردار F و r برابر خواهد بود. یعنی W=Fr خواهد بود. همچنین از مکانیک تحلیلی میدانیم که یکای نیرو برابر نیوتن (N) و یکای طول (r) برابر متر (m) است.بنابراین یکای کار برابر Nm خواهد بود. به افتخار ژول این واحد را ژول مینامند، یعنی یک ژول کار برابر با یک نیوتن در متر کار است.
محاسبه کار یک نیروی متغیر
اگر چنانچه نیروی F که عامل انجام دهنده کار است، مقدار ثابتی نباشد، یعنی در طول زمان متغیر باشد، در این صورت باید از یک رابطه انتگرالی برای محاسبه کار استفاده کنیم. در واقع مفهوم این مطلب را میتوان اینگونه بیان کرد که فاصله جابجایی را به قسمتهای بسیار کوچک dr تقسیم میکنیم که در آن F مقداری ثابت است. سپس کار انجام شده در المان dr را محاسبه کرده و آنها را باهم جمع میکنیم و این در واقع همان مفهوم انتگرال است.
اهمیت کار
کار در واقع مفهوم بسیار مهمی است که در علم فیزیک نقش بسیار اساسی بازی میکند. به عنوان مثال با استفاده از مفهوم کار میتوان در مورد یک دستگاه فیزیکی ، کمیتی به نام توان را تعریف کرد. توان عبارتست از کار انجام شده در واحد زمان بر روی دستگاه ، یا اینکه در مکانیک تحلیلی برای توصیف حرکت ذرات از قضیه کار انرژی جنبشی استفاده میکنند.
به عنوان یک مورد دیگر میتوان اشاره کرد که یکای کار و انرژی از یک نوع است و این امر بیانگر این مطلب است که کار انجام شده بر روی یک جسم به صورت انرژی در آن ذخیره میشود. به عنوان مثال اگر ما با اعمال یک نیروی معین جسمی به جرم m را از روی زمین بلند کرده و در ارتفاع معین h از زمین قرار دهیم، در این صورت بر روی این جسم مقداری کار انجام دادهایم. این کار به صورت انرژی پتانسیل در جسم ذخیره میشود. یعنی جسم در ارتفاع h که در حالت سکون قرار دارد، دارای انرژی mgh میباشد، که هرگاه جسم را از ارتفاع h رها کنیم، این آزاد میشود. بنابراین کار میتواند به انرژی تبدیل شود. ل یکای کار و انرژی ، هر