بخشی از مقاله

انسان و كامپيوتر


انسان ها از كامپيوترها باهوش ترند. چرا چنين گفته مي‌شود؟
كامپيوترها هرگز قادر به اين كار به طور مطلوب نيستند. شايد بهتر است بگوييم آن‌هاموجودات منطقي اي هستند و تنها اعمال منطقي را به خوبي انجام مي دهند.
هدف هوش مصنوعي را مي توان در اين جمله خلاصه كرد كه مي خواهد در نهايت به كامپيوترهايي دست يابد كه اغلب در فيلم هاي سينمايي مشاهده مي شود، ماشين‌هاي بسيار توانمند تر از انسان – هدفي كه بسيار از دنياي واقعي به دور
است . دنيايي كه اغلب به خاطراشتباهات فاحش كامپيوترها هزينه‌هاي بسيار زيادي را متحمل مي شود .

اگر به درون مغز نگاه كنيم ، به هيچ صورت چنين ساختاري را مشاهده نخواهيم كرد. بررسي اوليه ما چيزي جزمجموعه اي گره خورده از ماده‌اي خاكستري رنگ نشان نمي دهد. بررسي بيش‌تر و روشن‌ مي كند كه مغز از اجزايي ريز تشكيل شده است . ليكن اين اجزاء به شيوه‌اي بي نهايت پيچيده‌، مرتب شده‌اند و هز جزء به هزاران جزء ديگر متصل است. شايد اين تفاوت در شيوه ساختار ، علت اصلي اختلاف بين مغز و كامپيوتر است. كامپيوترها طوري طراحي شده‌ اند كه يك عمل را بعد از عمل ديگر باسرعت بسيار زياد انجام دهند .

ليكن مغز ما با تعداد اجزاي بيش‌تر اما با سرعتي بسيار كم‌تر كار مي‌كند . در حالي كه سرعت عمليات در كامپيوتر‌ها به ميليون‌ها محاسبه در ثانيه بالغ مي شود، سرعت عمليات در مغز تقريباً بيش‌تر از ده بار در ثانيه نمي‌باشد. ليكن مغز در يك لحظه با تعداد زيادي اجزاء به طور هم زمان كار مي كند، كاري كه از عهده كامپيوتر بر نمي‌آيد . كامپيوتر ماشيني سريع اما پياپي كار است در حالي كه مغز شديداً ساختاري موازي دارد. كامپيوترها مي توانند عملياتي را كه با ساختار آن‌ها سازگاري دارند به خوبي انجام دهند. براي مثال شمارش و جمع‌كردن اعمالي پياپي است كه يكي بعد از ديگري انجام مي شود . ليكن ديدن و شنيدن، اعمالي شديداً موازي‌اند كه در آن‌ها داده‌هاي متضاد و متفاوت هر كدام باعث اثرات و ظهور خاطرات متفاوتي در مغز مي شوند وتنها از طريق تركيب مجموعه اين عوامل متعدد است كه مغز مي‌تواند چنين اعمال شگفتي را انجام دهد .

نتيجه‌اي كه مي توان گرفت اين است كه مسائل مورد نظر ما شديداً خاصيت موازي دارند. اين مسائل نيازمند پردازش حجم زيادي از اطلاعات متفاوت هستند كه بايد در تقابل با يكديگر به حل مسأله بيانجامد.
سرعت عامل مهمي نيست . آنچه مهم است موازي بودن است و مغز به خوبي براي اين كار مهيا شده است . شيوه برخورد روش محاسباتي شبكه‌هاي عصبي، تسخير اصول راهبردي است كه زير بناي فرآيند مغز براي پاسخ‌گويي به اين سؤالات و به كارگيري آن‌ها در سيستم‌هاي كامپيوتري است .
در مدل‌سازي سيستم‌هاي اصلي مغز، بايد راه كاري را بيابيم كه بيش‌تر با ساختار موازي مغز سازگاري داشته باشد نه با ساختار پي‌درپي
به هر صورت ساختار طبيعتاً موازي سيستم هاي شبكه هاي عصبي آن ها را مناسب به كارگيري در ماشين هاي موازي مي كند. كه مي تواند مزاياي بيش تري از نظر سرعت و قابليت اطمينان داشته باشد.

شايد يكي از بارزترين ويژگي‌هاي مغز توان فراگيري آن باشد. مغز مي‌تواند به خود آموزش دهد . يادگيري از طريق مثال همان شيوه‌اي است كه توسط آن اطفال زبان را فرا مي‌گيرند . نوشتن، خوردن و آشاميدن را مي آموزند و مجموعه معيارها و نكات اخلاقي را كسب مي كنند . چنين تحولي درسيستم‌هاي كامپيوتري متعارف مشاهده نمي شود . كامپيوترها معمولاً از برنامه‌هاي از پيش نوشته شده‌اي پيروي مي كنند ك قدم به قدم دستورات مشخصي را در كليه مراحل عملياتي به آن ها مي دهند هر مرحله از كار بايدبه وضوح شرح داده شود.

ساختار مغز
مي‌دانيم كه مغز تقريباً داراي 1010 وحد پايه به نام نرون است و هر نرون تقريباً به 104 نرون ديگر اتصال دارد.
نرون عنصر اصلي مغز است و به تنهايي مانند يك واحد پردازش منطقي عمل مي كند . نرون‌ها دو نوع هستند . نرون‌هاي داخلي مغز كه در فاصله‌هاي حدود 100 ميكرون به يكديگر متصل اند و نرون‌هاي خارجي كه قسمت‌هاي مختلف مغز را به يكديگر و مغز را به ماهيچه‌ها و اعضاي حسي را به مغز متصل مي‌كنند . نحوه عمليات نرون بسيار پيچيده است و هنوز در سطح ميكروسكوپي چندان شناخته شده نيست، هر نرون بسيار پيچيده است و هنوز در سطح ميكروسكوپي چندان شناخته شده نيست ، هر چند قوانين پايه آن نسبتاً روشن است .هر نرون ورودي‌هاي متعددي را پذيراست كه با يكديگر به طريقي جمع مي‌شوند . اگر در يك لحظه ورودي‌هاي فعال نرون به حد كفايت برسد نرون نيز فعال شده و آتش مي‌كند . در غير اين صورت نرون به صورت غير فعال وآرام باقي مي ماند. نمايشي از ويژگي هاي عمده نرون بدنه نرون سوما ناميده مي شود . به سوما رشته‌هاي نامنظم طولاني متصل است كه به آنها دندريت مي‌‌گويند . قطر اين رشته‌ها اغلب از يك ميكرون نازك‌تر است و اشكال شاخه‌اي پيچيده‌اي دارند.

دندريت‌ها نقش اتصالاتي را دارند كه ورودي ها را به نرون ها مي رساند . اين سلول ها مي توانند عملياتي پيچيده‌تر از عمليات جمع ساده را بر ورودي هاي خود انجام دهند، ليكن عمل جمع ساده را مي‌توان به عنوان تقريب قابل قبولي از عمليات واقعي نرون به حساب آورد.

يكي از عناصر عصبي متصل به هسته نرون آكسون ناميده مي شود. اين عنصر بر خلاف دندريت از نظر الكتريكي فعال است و به عنوان خروجي نرون عمل مي‌كند.‌اكسون‌ها هميشه‌ در روي خروجي سلول‌ها مشاهده مي شوند . ليكن اغلب در ارتباط‌هاي بين نروني غايب‌اند. اكسون وسيله‌اي غير خطي است كه در هنگام تجاوز پتانسيل ساكن داخل هسته از حد معيني پالس ولتاژي را به ميزان يك هزارم ثانيه، به نام پتانسيل فعاليت، توليد مي كند . اين پتانسيل فعاليت در واقع يك سري از پرش هاي سريع ولتاژ است.
رشته اكسون در نقطه تماس معيني به نام سينا پس قطع مي شود و در اين مكان به دندريت سلول ديگر وصل مي گردد. در واقع اين تماس به صورت اتصال مستقيم نيست بلكه از طريق ماده شيميايي موقتي صورت مي‌گيرد . سيناپس پس از آن كه پتانسيل آن از طريق پتانسيل هاي فعاليت دريافتي از طريق آكسون به اندازه كافي افزايش يافته از خود ماده شيميايي به نام منتقل كننده عصبي ترشح مي‌كنند.

منتقل كننده عصبي ترشح شده درشكاف بين اكسون و دندريت پخش مي شود و باعث مي گردد كه دروازه‌هاي موجود در دندريت‌ها فعال شده و باز شود و بدين صورت شارژ شده وارد دندريت شوند . اين جريان يون است كه باعث مي‌شود پتانسيل دندريت افزايش يافته و باعث يك پالس ولتاژ در دندريت شود كه پس از آن منتقل شده و وارد بدن نرون ديگر مي شود .
ورودي‌هاي نرون بايد از آستانه معيني تجاوز كند تا نرون بتوند كنش كند.
يك نرون خود به تنهايي مي‌تواند داراي ورودي هاي سيناپسي متعددي در روي دندريت‌هاي خود باشد و ممكن است باخروجي هاي سيناپسي متعددي به دندريت‌هاي نرون‌هاي ديگر وصل شود.

يادگيري در سيستم‌هاي بيولوژيك
تصور مي شود يادگيري هنگامي صورت مي‌گيرد كه شدت اتصال يك سلول و سلول ديگر در محل سيناپس‌ها اصلاح مي گردد. به نظر مي‌رسد كه اين مقصود از طريق ايجاد سهولت بيش‌تر در ميزان آزاد شدن ناقل شيميايي حاصل مي گردد. اين حالت باعث مي شود كه دروازه‌هاي بيش‌تري روي دندريت‌هاي سمت مقابل باز شود و به اين صورت باعث افزايش ميزان اتصال دو سلول شود .

تغيير ميزان اتصال نرون‌ها به صورتي كه باعث تقويت تماس‌هاي مطلوب شود از مشخصه‌هاي مهم در مدل‌هاي شبكه‌هاي عصبي است .
آخرين لايه خارجي آن قشر مغز ناميده مي شود، همچنين ديدم كه ساختار مغز به گونه‌اي است انجام اين فعاليت‌ها را به آساني امكان‌پذير مي سازد و در عوض در زمينه‌هاي ديگر كارآيي مغز را محدود مي كند. روند تكامل مغز متأثر از فعاليت هايي بوده كه اهميت بيش تري داشته است، از آن‌جايي كه توانايي دين و شنيدن صدا در انسان از توانايي جمع كردن دقيق اعداد اهميت بيش‌تري داشته و اين امر باعث تكامل اين جنبه مغز شده است. مغز داراي ساختاري شديداً موازي كه در آن تعداد زيادي واحدهاي محاسباتي ساده به صورت مشترك انجام فعاليت را به عهده دارند، به جاي اين كه تمام بار فعاليت را بر دوش يك واحد سريع قرار دهند، اين تقسيم كار پيامدهاي مثبت ديگري نيز دارد، چون تعداد زيادي نرون در يك زمان درگير فعاليت هستند سهم هر يك از نرون‌ها چندان حائز اهميت نيست . بنابراين اگر يكي راه خطا رود نتيجه آن تأثير چنداني بر ديگران نخواهد داشت .

اين نحوه توزيع كار كه اصطلاحاً پردازش توزيع شده ناميده مي شود، داراي اين خاصيت است كه لغزش هاي احتمالي در جاي جاي سيستم پردازي تا اندازه‌اي قابل چشم‌پوشي مي باشد. در واقع مغز با توجه به توانايي يادگيري مي تواند نقصان هميشگي يكي از نرون‌هاي خود را با وارد كردن نرون‌هاي ديگر جبران كند. توان انجام فعاليت در حالي كه فقط تعدادي از نرون‌ها به درستي كار مي كنند را در محافل محاسباتي تحمل خطا مي‌گويند، زيرا كه سيستم، مثلاً مغز ، مي‌تواند بدون ايجاد خروجي هاي بي معني خطاها را تحمل كند . اين يكي از ويژگي‌هاي بارز مغز است ، كامپيوترها در ساختار بسيار متفاوت اند .

در متن اصلی مقاله به هم ریختگی وجود ندارد. برای مطالعه بیشتر مقاله آن را خریداری کنید