مقاله در مورد پایه های منطقی نظریه سی.پی.اچ

word قابل ویرایش
26 صفحه
8700 تومان
87,000 ریال – خرید و دانلود

پایه های منطقی نظریه سی.پی.اچ

مقدمه
جهان بینی علمی در فیزیک نظری با کارهای گالیله آغاز شد. هرچند که تلاشهای گالیله زیربنای فیزیک کلاسیک را تشکیل داد، اما این تلاشها ریشه در نگرشهای جدید به پدیده های فیزیکی داشت که مهمترین آنها را می توان در آثار برونو و کپلر مشاهده کرد. برونو به طرز ماهرانه ای در آثار خود تشریح کرد که همه ی ستارگان جهان نظیر خورشید هستند. کپلر با ارائه سه قانون خود نشان داد که حرکت سیارات قانونمند است و یک نظم منطقی در حرکت، دوره تناوب و مسیر آنها وجود دارد.

گالیله آزمایشهای زیادی انجام داد تا بتواند حرکت اجسام را در یک سری قوانین کلی خلاصه کند. در این میان آزمایش سطح شیبدار گالیله از همه مشهورتر است. اما نمی توان تاثیر نگرش گالیله را در پیشرفت علم به این آزمایشها خلاصه کرد. در حقیقت گالیله نوعی نگرش منطقی به پدیده های فیزیکی داشت که تا آن زمان بی سابقه بود. این نگرش زیربنای روش استقرایی را در فیزیک تشکیل داد و بتدریج به سایر علوم گسترش یافت.

هرچند آزمایشهای گالیله از نظر کمی و کیفی با آزمایشهای امروزی قابل مقایسه نیست، اما آزمایشهای بسیار پیچیده و پیشرفته امروزی نیز از همان قاعده ی نگرش استقرایی گالیله پیروی می کنند. به این ترتیب گالیله زیر ساخت فیزیک را ایجاد کرد و نحوه ی

برخورد علمی با طبیعت را نشان داد. اما نتیجه ی این تلاشها به صورت تشریحی بیان می شد.
سالها بعد نیوتن نتایج به دست آمده توسط گالیله را فرمول بندی و در قالب یک سری معادلات ریاضی ارائه کرد و ساختار فیزیک کلاسیک را مدون ساخت. قانون جهانی گرانش نیوتن دست آورد بزرگی بود. نیوتن برای توجیه پدیده های فیزیکی ” نگرش دیفرانسیلی” را جایگزین روش انتگرالی کرد. در روش انتگرالی همواره نتایج مورد نظر است. در حالیکه در نگرش دیفرانسیلی تحلیل روند رسیدن به نتایج مورد بحث قرار می گیرد و جواب های خاص را می توان از آن به دست آورد. به عنوان مثال قوانین کپلر را با قانون جهانی گرانش نیوتن مقایسه کنید. در قوانین کپلر نمی توان دوره ی گردش یک سیاره را از روی دوره ی گردش سیاره ی دیگر استخراج کرد. علاوه بر آن هر سه قانون کپلر مستقل از هم هستند. در حالیکه در قانون نیوتن می توان دوره گردش همه ی سیارات به دور خورشید را به دست آورد.
بنابراین می توان گفت گالیله روش استقرایی را به وجود آورد و نیوتن روش دیفرانسیلی را ابداع کرد. لذا تاثیر تلاشهای گالیله و نیوتن در پیشرفت علوم ممتاز و غیر قابل انکار و در عین حال بی نظیر است.
مشکلات قوانین نیوتن
هنگامیکه نیوتن قوانین حرکت و قانون جهانی جاذبه را ارائه کرد، این قوانین از نظر منطقی با اشکالات جدی همراه بود. قانون دوم نیوتن بصورت
F=ma
تا سرعتهای نامتناهی را پیشگویی می کرد که با تجربه سازگار نیست. و قانون سوم وی بیان کننده ی کنش از راه دور یا همزمانی عمل و عکس العمل است که این نیز با ابهام و اشکات خود روبرو بود.
یعنی اثر نیروی جاذبه با سرعت نامتناهی منتقل می شد. تاثیر از راه دور همواره مورد انتقاد قرار داشت.
اما مهمترین مشکل قوانین نیوتن در قانون جهانی گرانش وی بود و خود نیوتن نیز متوجه آن شده بود.
نیوتن دریافت که بر اثر قانون جاذبه او، ستارگان باید یکدیگر را جذب کنند و بنابراین اصلاً به نظر نمی رسد که ساکن باشند. نیوتن در سال ۱۶۹۲ طی نامه ای به ریچارد بنتلی نوشت “که اگر تعداد ستارگان جهان بینهایت نباشد، و این ستارگان در ناحیه ای از فضا پراکنده باشنبش یکسان پراکنده باشند، نقطه مرکزی در کار نخواهد بود تا همه بسوی آن کشیده شوند و بنابراین جهان در هم نخواهد ریخت.”
این برداشت نیز با یک اشکال اساسی مواجه شد. بنظر سیلیجر طبق نظریه نیوتن تعداد خطوط نیرو که از بینهایت آمده و به یک جسم می رسد با جرم آن جسم متناسب است. حال اگر جهان نامتناهی باشد و همه ی اجسام با جسم مزبور در کنش متقابل باشند، شدت جاذبه وارد بر آن بینهایت خواهد شد.
مشکل بعدی قانون جاذبه نیوتن این است که طبق این قانون یک جسم به طور نامحدود می تواند سایر اجسام را جذب کرده و رشد کند، یعنی جرم یک جسم می تواند تا بینهایت افزایش یابد. این نیز با تجربه تطبیق نمی کند، زیرا وجود جسمی با جرم بینهایت مشاهده نشده است.
مشکل بعدی قوانین نیوتن در مورد دستگاه مرجع مطلق بود. همچنان که می دانیم حرکت یک جسم نسبی است، وقتی سخن از جسم در حال حرکت است، نخست باید دید نسبت به چه جسمی یا در واقع در کدام چارچوب در حرکت است. دستگاه های مقایسه ای در فیزیک دارای اهمیت بسیاری هستند. قوانین نیوتن نسبت به دستگاه مطلق مطرح شده بود. یعنی در جهان یک چارچوب مرجع مطلق وجود داشت که حرکت همه اجسام نسبت به آن قابل سنجش بود. در واقع همه ی اجسام در این چارچوب مطلق که آن را “اتر” می نامیدند در حرکت بودند. یعنی ناظر می توانست از حرکت نسبی دو جسم صحبت کند یا می توانست حرکت مطلق آن را مورد توجه قرار دهد.
براین اساس مایکلسون تصمیم داشت سرعت زمین را نسبت به دستگاه مطلق “اتر” به دست آورد. مایکلسون یک دستگاه تداخل سنج اختراع کرد و در سال ۱۸۸۰ تلاش کرد طی یک آزمایش سرعت مطلق زمین را نسبت به دستگاه مطلق “اتر” به دست آورد. نتیجه آزمایش منفی بود. (برای بحث کامل در این مورد به کتابهای فیزیک بنیادی مراجعه کنید.) با آنکه آزمایش بارها و بارها تکرار شد، اما نتیجه منفی بود. هرچند مایکلسون از این آزمایش نتیجه ی مورد نظرش را به دست نیاورد، اما به خاطر اختراع دستگاه تداخل سنج خود، بعدها برنده جایزه نوبل شد.

نسبیت خاص
برای توجیه علت شکست آزمایش مایکلسون نظریه های بسیاری ارائه شد تا سرانجام اینشتین در سال ۱۹۰۵ نسبیت خاص را مطرح کرد. نسبیت خاص شامل دو اصل زیر است:
۱- قوانین فیزیک در تمام دستگاه های لخت یکسان است و هیچ دستگاه مرجع مطلقی در جهان وجود ندارد.
۲- سرعت نور در فضای تهی و در تمام دستگاه های لخت ثابت است.
در نسبیت سرعت نور، حد سرعت ها است، یعنی هیچ جسمی نمی تواند با سرعت نور حرکت کند یا به آن برسد.
نتیجه این بود که قانون دوم نیوتن باید تصحیح می شد. طبق نسبیت جرم جسم تابع سرعت آن است، یعنی با افزایش سرعت، جرم نیز افزایش می یابد و هر جسمی که بخواهد با سرعت نور حرکت کند باید دارای جرم بینهایت باشد. لذا قانون دوم نیوتن بصورت زیر تصحیح شد.

بنابر این جرم تابع سرعت است و با افزایش سرعت، جرم نیز افزایش می یابد. هنگامیکه سرعت جسم به سمت سرعت نور میل کند، جرم به سمت بینهایت میل خواهد کرد و عملاً هیچ نیرویی نمی تواند به آن شتاب دهد.
از طرف دیگر طبق نسبیت جرم و انرژی هم ارز هستند، یعنی جرم جسم را می توان بصورت محتوای انرژی آن مورد ارزیابی قرار داد.
E=mc2
m=E/c2
بنابراین انرژی دارای جرم است. اما در نسبیت نور از کوانتومهای انرژی تشکیل می شود که آن را فوتون می نامند و با سرعت نور حرکت می کند. این سئوال مطرح شد که اگر انرژی دارای جرم است و فوتون نیز حامل انرژی است که با سرعت نور حرکت می کند، پس چرا جرم آن بینهایت نیست؟
پاسخ نسبیت به این سئوال این بود که جرم حالت سکون فوتون صفر است. در حالیکه رابطه ی جرم نسبیتی در مورد جرم حالت سکون غیر صفر بر قرار است. لذا در نسبیتبا دو نوع ذرات سروکار داریم، ذراتی که دارای جرم حالت سکون غیر صفر هستند نظیر الکترون و ذراتی که دارای جرم حالت سکون صفر هستند مانند فوتون. در نسبیت تنها ذراتی می توانند با سرعت نور حرکت کنند که جرم حالت سکون آنها صفر باشد.
مشکل نسبیت خاص در این است که جرم نسبیتی آن (جرم بینهایت) مانند سرعت بینهایت در مکانیک کلاسیک با تجربه تطبیق نمی کند. یعنی هیچ نمونه ی تجربی که با جرم بینهایت نسبیت تطبیق کند مشاهده نشده است.

علاوه بر آن در نسبیت و حتی در مکانیک کوانتوم توضیحی وجود ندارد که نحوه ی تولید فوتون را با سرعت نور توضیح بدهد. و چرا فوتون در حالت سکون یافت نمی شود. آیا فوتون از ذرات دیگری تشکیل شده است؟ اگر جواب منفی است این سئوال مطرح می شود که فوتون های مختلف با یکدیگر چه اختلافی دارند؟ در حالیکه همه ی فوتون ها با انرژی متفاوت با سرعت نور حرکت می کنند. آزمایش نشان داده است که فوتون در برخورد با سایر ذرات قسمتی از انرژی خود را از دست می دهد. حال این سئوال مطرح می شود که فرض کنیم فوتون شامل ذرات دیگری نیست، این را باید توضیح داد وقتی قسمتی از آن جدا می شود و باز هم دارای همان خواص اولیه است ولی با انرژی کمتر؟ یعنی فوتون قابل تقسیم است، هر ذره ی قابل تقسیمی باید شامل زیر ذره باشد.
واقعیت این است که فوتون در شرایط نور تولید می شود و اجزای تشکیل دهنده آن نیز بایستی با همان سرعت نور حرکت کنند و حالت سکون فوتون یعنی تجزیه ی آن به اجزای تشکیل دهنده اش.
از طرفی می دانیم جرم و انرژی هم ارز هستند، آیا این منطقی است که می توان سرعت جرم را تغییر داد اما سرعت انرژی ثابت است؟
نسبیت عام:
نسبیت خاص دارای یک محدودیت اساسی بود. این محدودیت ناشی از آن بود که رویدادهای فیزیکی را در دستگاه های لخت مورد بررسی قرار می داد، در حالیکه در جهان واقعی دستگاه ها شتاب دار هستند. هرچند می توان در بر رسی برخی رویداد ها به دستگاه های لخت بسنده کرد، اما این دستگاه ها برای بررسی تمام رویدادها ناتوان هستند.
اینشتین در سال ۱۹۱۵ نسبیت عام را ارائه کرد و نسبیت خاص به عنوان حالت خاصی از نسبیت عام در آمد.
نسبیت عام بر اساس اصل هم ارزی تدوین شد.
اصل هم ارزی:
قوانین فیزیک در یک میدان جاذبه یکنواخت و در یک دستگاه که با شتاب ثابت حرکت می کند، یکسان هستند.
به عنوان مثال فرض کنیم یک دستگاه مقایسه ای با شتاب ثابت در حرکت است. مشاهدات در این دستگاه نظیر مشاهدات در یک میدان گرانشی یکنواخت است در صورتی که شدت میدان گرانشی برابر شتاب دستگاه باشد، یعنی a=g باشد، در این صورت مشاهدات یکسان خواهد بود.
مهمترین دستاورد نسبیت عام توجیه مدار عطارد بود. بررسی های نجومی نشان داده بود که نقطه حضیض عطارد جابه جا می شود. بیش ار یکصد سال بود که فیزیکدانان مت

وجه ان شده بودند، اما نمی توانستند با قوانین نیوتن توجیه کنند. اما نسبیت عام توانست آن را توجیه کند.
بنا بر نسبیت، گرانش اثر هندسی جرم بر فضای اطراف خود است. که فضا- زمان نامیده می شود. یعنی جرم فضای اطراف خود را خمیده می کند و مسیر نور در اطراف آن خط مستقیم نیست، بلکه منحنی است.
در سال ۱۹۱۹ انحنای فضا را هنگام کسوف کامل خورشید با نوری که از طرف ستاره ی مورد نظری به سوی زمین در حرکت بود و از کنار خورشید می گذشت مورد تحقیق قرار دادند که با پیشگویی نسبیت تطبیق می کرد. این موفقیت بسیار بزرگی برای نسبیت بود. از آن زمان به بعد توجه به ساختار هندسی و خواص توپولوژیک فضا بررسی واقعیت های فیزیکی را به حاشیه راند. مضافاً اینکه گرانش را از فهرست نیروهای اساسی طبیعت در فیزیک نظری حذف کرد.

مشکلات اساسی نسبیت را می توان به صورت زیر فهرست کرد:
۱- مشکل نسبیت با مکانیک کوانتوم- مکانیک کوانتوم ساختار ریز و کوانتومی کمیت ها و واکنش متقابل آنها را مورد بررسی قرار می دهد. به عبارت دیگر نگرش مکانیک کوانتوم بر مبنای کوانتومی شکل گرفته است. در این زمینه تا جایی پیش رفته که حتی اندازه حرکت و برخی دیگر از کمیتها را کوانتومی معرفی می کند. این نتایج بر مبنای یکسری شواهد تجربی مطرح شده و قابل پذیرش است. علاوه بر آن تلاشهای زیادی انجام می شود پدیده های بزرگ جهان را با قوانین شناخته شده در مکانیک کوانتوم توجیه کنند. حال به نسبیت توجه کنید که فضا-زمان را پیوسته در نظر می گیرد. بنابراین نسبیت با مکانیک کوانتوم ناسازگار است. تلاشهای زیادی انجام شده تا به طریقی یک هماهنگی منطقی و قابل قبول بین نسبیت و مکانیک کوانتوم ایحاد شود. در این مورد کارهای دیراک شایان توجه است که مکانیک کوانتوم نسبیتی را پایه گذاری کرد و آن را توسعه داد. اما در مورد نسبیت عام موفقیت چندانی نصیب فیزیکدانان نشده است.
۲- پیچیدگی و عدم وجود تفاهم در نسبیت- پیچیدگی نسبیت موجب شده که تفاهم منطقی بین فیزیکدانان در مورد نتایج و پیشگویی های نسبیت وجود نداشته باشد. به عبارت دیگر نسبیت شدیداً قابل تفسیر است. این تفاسیرگاهی چنان متناقض هستند به عنوان مثال: اینشتین از سال ۱۹۱۷ شروع به تدوین یک نظریه قابل تعمیم به عالم کرد. وی با مشکلات حل نشدنی ریاضی برخورد کرد. به همین دلیل در معادلات گرانش عبارت مشهور ” پارامتر عالم ” را وارد کرد. ملاحظات وی در این موضوع بر دو فرضیه مبتنی بود.
الف – ماده دارای چگالی متوسطی در فضاست که در همه جا ثابت و مخالف صفر است.
ب- بزرگی ” شعاع ” فضا به زمان بستگی ندارد.

در سال ۱۹۲۲ فریدمان نشان داد که اگر از فرضیه دوم چشم پوشی شود، می توان فرضیه اول را حفظ کرد بی آنکه در معادلات به پارامتر عالم نیازی باشد. فریدمان بر این اساس یک معادله ی دیفرانسیل به صورت زیر ارائه کرد:

در واقع سالها قبل از کشف هابل در مورد انبساط فضا، فریدمان دقیقاً کشفیات او را پیش بینی کرده بود. معادله ی” فریدمان” معادله ی اصلی کیهان شناخت نیوتنی است و بدون تغییر در نظریه نسبیت عام نیز صادق است. اینشتین بر همه نتایج به دست آمده توسط فریدمان اعتراض کرد و مقاله ای نیز در این باب انتشار داد. سپس حقایق را در فرضیه فریدمان دی

د و با شجاعت کم نظیری طی نامه ای که برای سردبیر مجله آلمانی فرستاد به اشتباه خود در محاسباتش اعتراف کرد.
بیشتر مشکلات نسبیت ناشی از خواصی است که که به علت وجود ماده برای فضا قایل می شوند. که در آن هندسه جای فیزیک را می گیرد. زمانی پوانکاره گفته بود که اگر مشاهدات ما نشان دهد که فضا نااقلیدسی است، فیزیکدانان می توانند فضای اقلیدسی را قبول کرده و نیروهای جدیدی وارد نظریه های خود کنند. اما نسبیت چنین نکرد و ماهیت پد

یده های فیزیکی را به دست فراموشی سپرد. هرچند پدیده های فیزیکی را بدون ابزار محاسباتی، اعم از جبری و هندسی نمی توان توجیه کرد، اما فیزیک نه هندسه است و نه جبر، فیزیک، فیزیک است وبس!!!
۳- مشکل گرانش نیوتنی در نسبیت همچنان باقی است
در نسبیت فضا- زمان دارای انحناست. هرچه ماده بیشتر و چگالتر باشد، انحنای فضا بیشتر است. سئوال این است که این انحنای فضا تا کجا می انجامد؟ در نسبیت انحنای فضا می تواند چنان تابیده شود که حجم به صفر برسد. برای آنکه ماده بتواند چنان بر فضا اثر بگذارد که حجم به صفر برسد، باید جرم به سمت بی نهایت میل کند. یعنی نسبیت نتوانست مشکل قانون گرانش را در مورد تراکم ماده در فضا حل کند، علاوه بر آن بر مشکل افزود. زیرا قانون نیوتن می پذیرد که ماده تا بی نهایت می تواند متمرکز شود، اما حجم صفر با آن سازگار نیست. اما نسبیت علاوه بر آن که می پذیرد ماده می تواند تا بی نهایت متراکم شود، پیشگویی می کند که حجم آن نیز به صفر می رسد.]
این بحث را سخنان هاوکینگ ادامه می دهیم.
نظریه‌ها
نظریه نسبیت عام اینشتین نظریه‌ای در باره جرم های بزرگ مثل ستارگان و کهکشان هاست که برای توضیح گرانش در این سطوح بسیار خوب است.مکانیک کوانتومی نظریه‌ای است که نیروهای طبیعت را مانند پیام‌هایی می‌داند که بین فرمیون‌ها(ذرات ماده) رد و بدل می‌شوند. این نظریه اصل ناامیدکننده‌ای را نیز که اصل عدم قطعیت نام دارد در بر می‌گیرد. بنابر این اصل هیچگاه ما نمی‌توانیم همزمان مکان و سرعت(تندی و جهت حرکت) یک ذره را با دقت بدانیم . با وجود این مسئله مکانیک کوانتومی در توضیح اشیاء، در سطوح بسیار ریز خیلی موفق بوده است.
یک راه برای ترکیب این دو نظریه بزرگ قرن بیستم در یک نظریه واحد آن است که گرانش را همانطور که در مورد نیروهای دیگر با موفقیت به آن عمل می‌کنیم، مانند پیام ذرات در نظر بگیریم. یک راه دیگر بازنگری نسبیت عام انیشتین در پرتو نظریه عدم قطعیت است.
اما اگر نیروی گرانش را مانند پیام بین ذرات در نظر بگیریم، با مشکلاتی مواجه می‌شویم.
اگر نیروی گرانش را تبادل گراویتونها (پیام‌رسان‌های گرانش) که بین ذرات بدن خود و ذراتی که کره زمین را تشکیل می‌دهند، در نظر بگیرید، در اینصورت نیروی گرانشی با روش مکانیک کوانتومی بیان می‌شود. اما حل این مسئله از نظر ریاضی بغرنج می‌شود. چون بی‌نهایت‌هایی

حاصل می‌شوند که خارج از مفهوم ریاضی معنایی ندارند. نظریه‌های علم فیزیک واقعاْ نمی‌توانند با این بی‌نهایت‌ها سر و کار داشته باشند.
آنها اگر در نظریه ها ظاهر شوند تئوریسین‌ها به روشی که آن را ریترمالیزیشن یا بازبهنجارش می نامند، متوسل می شوند.
“ریچارد فاینمن” در این باره می‌گوید: این کلمه هر چقدر زیرکانه باشد، بازمن آن را یک روش دیوانه‌وار می‌نامم.
خود او هنگامی که روی نظریه‌اش در مورد نیروی الکترومغناطیسی کار می‌کرد، از این روش سود جست. اما او به این کار زیاد راغب نبود. در این روش از بی‌نهایت‌های دیگری برای خنثی کردن بی‌نهایت‌های نخستین، استفاده می‌شود. نفس این عمل اگر چه مشکوک است ولی نتیجه در بسیاری از موارد کاربرد خوبی دارد. نظریه‌هایی که با به‌کارگیری این روش به‌دست می‌آیند، خیلی خوب با مشاهدات همخوانی دارند.
استفاده از روش بازبهنجارش در مورد نیروی الکترومغناطیسی کارساز است ولی در مورد گرانش این روش موفق نبوده است. بی‌نهایت‌ها در مورد نیروی گرانش از جهتی بدتر از بی‌نهایت‌های نیروی الکترومغناطیسی هستند و حذفشان ممکن نیست.
راه دیگر
از طرف دیگر اگر مکانیک کوانتومی را برای مطالعه اجسام بسیار بزرگ در قلمرویی که گرانش فرمانروای بی‌چون و چرا است بکار بریم چه خواهد شد؟ به‌دیگر سخن اگر ما آنچه را که نظریه نسبیت عام در باره گرانش می‌گوید، در پرتو اصل عدم قطعیت بازنگری کنیم، چه اتفاقی خواهد افتاد؟
همانطور که گفتیم طبق اصل عدم قطعیت نمی توان با دقت مکان و سرعت یک ذره را همزمان اندازه گرفت. آیا این بازنگری موجب تفاوت زیادی خواهد شد؟
شرایط مرزی ممکن است به این نتیجه منتهی شود که مرزی وجود ندارد حالا که از ضد و نقیض‌ها گفتیم، یکی دیگر هم اضافه کنیم.
فضای خالی، خالی نیست
اصل عدم قطعیت بدان معنی است که فضا مملو از ذره و پادذره است.
نظریه نسبیت عام همچنین به مـــا می‌گوید کـــه وجود ماده یـــا انرژی سبب خمیدگی فضا- زمان می‌شود. یک نمونه خمیدگی آشنا می‌شناسیم. خمیدگی باریکه‌های نور ستارگان دور هنگامی که از نزدیکی اجسام با جرم بزرگ نظیر خورشید می‌گذرند.

این دو موضوع را به‌یاد داشته باشیم
یک – فضای «خالی» از ذرات و پادذرات پر شده است. جمع کل انرژی آن‌ها مقداری عظیم یا مقداری بی نهایت از انرژی است.
دو – وجود این انرژی باعث خمیدگی فضا- زمان می‌شود.

ترکیب این دو ایده ما را به این نتیجه می رساند که کل جهان می بایستی در یک توپ کوچک پیچیده شده باشد. چنین چیزی روی نداده است.
بدین‌سان موقعی که از نظریه‌های نسبیت عام و مکانیک کوانتومی توامان استفاده می شود، پشگویی آنها اشتباه محض است.
علاوه بر هاوکینگ فیزیکدانان بسیاری برای ترکیب دو نظریه نسبیت عام و مکانیک کوانتوم تلاش کردند و در این زمینه نظریه های مختلفی مطرح شد که مهمترین آنها نظریه ریسمانها است. در نظریه ریسمانها نگرش به ذرت شبیه سیمهای گیتار است که تحت کشش های مختلف، نتهای متفاوتی را تولید می کنند.
اگر تئوری ریسمان، تئوری گرانش کوانتوم باشد، پس متوسط اندازه ریسمان باید چیزی نزدیک به مقیاس گرانش کوانتوم باشد که طول پلانک نامیده می‌شود.
ریسمان چیست؟
رشته سیمهای گیتار را تصور کنید که با کشیده شدن در طول گیتار کوک شده‌اند؛ بسته به آنکه سیمها چقدر کشیده شوند و تحت فشار قرار گیرند، نت‌های موسیقی مختلفی بوسیله آنها ایجاد می‌شود. می‌توانیم این نت‌های موسیقی را “حالتهای برانگیخته” سیمهای گیتار تحت کشش بنامیم. به طور مشابه در تئوری ریسمان ذرات بنیادین که در شتابدهنده‌ها مشاهده می‌شوند را می‌توانیم نت‌های موسیقی و یا همان “حالتهای برانگیخته” فرض کنیم. شکل زیر

در تئوری ریسمان همانند نواختن گیتار، ریسمانها باید تحت کشش قرار بگیرند تا برانگیخته شوند.

کشش ریسمان
اگرچه ریسمانها در تئوری ریسمان در فضا- زمان شناور هستند و مانند گیتار مقید نیستند، ولیکن با این حال آنها کشش دارند، کشش ریسمان در تئوری ریسمان با کمیت

شناخته می‌شود و در آن α´ با مربع مقیاس طول ریسمان متناسب است.
اگر تئوری ریسمان تئوری گرانش کوانتوم باشد، پس متوسط اندازه ریسمان باید چیزی نزدیک به مقیاس طول گرانش کوانتوم باشد که طول پلانک نامیده می‌شود و حدود ده بتوان منهای سی و سه سانتیمتر می‌باشد.
Lp=10-33 cm
متاسفانه این بدان معناست که ریسمانها به حدی برای دیدن با تکنولوژی فعلی فیزیک ذرات کوچک هستند که فیزیکدانان مجبور به ابداع روشهای جدیدی برای آزمایش تئوری شدند.
ابر تقارن
تئوری در ابتدا فقط برای بوزون‌ها بود، به منظور اینکه فرمیون‌ها هم وارد تئوری ریسمان شوند باید یک نوع بخصوص از تقارنی به نام ابرتقارن وجود می‌داشت که به واسطه آن برای هر بوزون، یک فرمیون متناظر وجود داشته باشد. پس ابرتقارن، ذرات حامل نیرو و ذراتی که ماده را می‌سازند به هم مربوط می‌کند.
نتایج ابرتقارن در آزمایشات ذرات مشاهده نشده‌اند اما نظریه پردازان معتقد هستند که ذرات ابرتقارن بزرگتر و سنگین‌تر از آن هستند که در شتابدهنده‌های فعلی بتوان آنها را مشاهده کرد. ایجاد شتابدهنده‌های قوی‌تر در انرژی بالا در دهه آینده می‌تواند شواهد لازم برای ابرتقارن در اختیار ما قرار دهند
بهنجارش
مهم نبود که هر کس چقدر تلاش می‌کرد، به نظر می‌رسید گرانش به هیچ وجه به نظریه‌ای قابل بهنجارش تبدیل نمی‌شود؛ یک مشکل بزرگ این بود که امواج گران

ش کلاسیک که فرض می‌شد ذره حامل آن گراویتون است، دارای اسپین ۲ بودند و برای اسپین دو عبارت ۴j-8+D مساوی D می‌شد و برای D=4انتگرال بینهایت می‌شد، مثل توان چهارم ممنتوم وقتی که ممنتوم به سمت بینهایت میل می‌کند. و این برای فیزیکدانان غیرقابل هضم بود و سالها تلاش آنها در راه رسیدن به «گرانش کوانتوم» ناکام ماند. در اینجا بود که تئوری ریسمان وارد شد تا این خلا را پر کند. تئوری ریسمان در اصل برای توصیف روابط میان جرم و اسپین هادرون‌ها پیشنهاد شده ‌بود. در تئوری ریسمان، ذرات از برآشفتگی ریسمان‌های بسیار

ریزی بوجود می‌آمدند، یک ذره که از این برآشفتگی‌ها بر می‌خواست، ذره‌ای بود با جرم صفر و دو واحد اسپین. موفقیتی که تئوری ریسمان داشت این بود که در مدل دیاگرامهای فاینمن، دیاگرامها به سطوح صاف دو بعدی تبدیل می‌شدند و انتگرالهای روی سطح دیگر مشکل فاصله صفر را نداشتند.
در ۱۹۷۴ نهایتا این سوال مطرح شد که آیا تئوری ریسمان می‌تواند تئوری گرانش کوانتوم باشد؟
در تئوری ریسمان، ممنتوم بینهایت به معنای فاصله صفر نبود، زیرا در این تئوری رابطه بین ممنتوم و فاصله به قرار زیر بود

داشت، کمیتی بنیادین بر اساس رابطه به تنش ریسمان‌ها بستگی a’ کمیت

رابطه بالا به طور غیرمستقیم بیان می‌کند که کمترین طول قابل مشاهده برای تئوری ریسمان به صورت زیر است

تار ذره در فاصله صفر که در تئوری میدان کوانتوم بسیار مشکل‌ساز بود، در تئوری ریسمان بسیار بی‌اهمیت شد و همین باعث شد که تئوری ریسمان نامزد تئوری گرانش کوانتوم شود. اگر تئوری ریسمان، تئوری گرانش کوانتوم باشد، مقدار طول مینیموم باید حداقل اندازه طول پلانک باشد که از ترکیب ثابت پلانک و ثابت گرانش نیوتون و سرعت نور بدست می‌آید.

لازم به ذکر است که مساله مقیاس طول در تئوری ریسمان به خاطر دوگانگی ریسمان‌ها پیچیده و مشکل شد.
یک تصویر نو از تئوری ریسمان
متخصص های نظریه ی ریسمان بر این باور هستند که پنج تئوری ابر ریسمان وجود دارد:
IIB نوع IIA نوع I نوع
و دو حالت تئوری ریسمان اکتشافی یا هترو تیک که عبارتند از:
heterotic SO(32) heterotic E8×E8
تفکر این است که از بین این پنج نماینده برای تئوری ریسمان تنها یک تئوری درست است ” یک تئوری برای همه چیز ” و می گفت که فضا – زمان ده بعدی در چهار بعد که امروزه توسط دانشمندان تأیید شده است فشرده شده است.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
word قابل ویرایش - قیمت 8700 تومان در 26 صفحه
87,000 ریال – خرید و دانلود
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد