دانلود فایل پاورپوینت رابطه پاره خط ها

PowerPoint قابل ویرایش
11 صفحه
8900 تومان

لطفا به نکات زیر در هنگام خرید دانلود فایل پاورپوینت رابطه پاره خط ها توجه فرمایید.

1-در این مطلب، متن اسلاید های اولیه دانلود فایل پاورپوینت رابطه پاره خط ها قرار داده شده است

2-به علت اینکه امکان درج تصاویر استفاده شده در پاورپوینت وجود ندارد،در صورتی که مایل به دریافت تصاویری از ان قبل از خرید هستید، می توانید با پشتیبانی تماس حاصل فرمایید

4-در صورت مشاهده بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل اسلاید ها میباشد ودر فایل اصلی این پاورپوینت،به هیچ وجه بهم ریختگی وجود ندارد

5-در صورتی که اسلاید ها داری جدول و یا عکس باشند در متون زیر قرار نخواهند گرفت

— پاورپوینت شامل تصاویر میباشد —-

اسلاید ۱ :

پاره‌خط در هندسه به جزئی از خط گفته می‌شود که به دو نقطه انتهایی محدود شده، و تمامی نقاط مابین آندو را در بر بگیرد.
در مورد چندضلعیها، پاره‌خط را ضلع می‌نامند هرگاه که دو نقطهٔ انتهایی آن در حکم دو رأس مجاور چندضلعی باشد، و در غیر این صورت، به آن قطر گفته می‌شود.
اگر AوB دو نقطه انتهایی پاره خطی باشند این پاره خط را با نماد AB نشان میدهیم.

اسلاید ۲ :

برخی نکات در رابطه با زاویه ها

. اگر دو زاویه مجاور باشند ، زاویه ای که بین نمیسازهای این دو زاویه تشکیل می شود ، نصف کل زاویه است

اسلاید ۳ :

. نیمسازهای دو زاویه مجانب بر هم عمودند.

. دو زاویه متقابل به رأس با هم مساویند.

اسلاید ۴ :

۴. نیم سازهای دو زاویه متقابل به رأس در یک امتدادند.

. هر نقطه واقع بر نیمساز زاویه از دو ضلع زاویه به یک فاصله است و بالعکس هر نقطه که از دو ضلع یک زاویه به یک فاصله باشد ، بر نیمساز زاویه واقع است.

اسلاید ۵ :

قارن یا همامونی به معنای تشابه بخش‌ها حول محور یا مرکز تقارن است[۱]. این واژه در هنرهای گوناگون به ویژه هنرهای تجسمی و در علومی مانند فیزیک بسیار کاربرد دارد.

در علوم، به طور مطلق ناوردایی نسبت به تبدیلات هندسی را تقارن گویند مفهوم تقارن به مفاهیمی چون تقارن در زمان (ناوردایی تحت تبدیل هندسی انتقال در مولفه صفرم چاربردار مکان) نیز تعمیم داده می‌شود

اسلاید ۶ :

مثلث

 

می دانید که هر مثلث دارای اجزایی می باشد

الف) اجزای اصلی: به سه زاویه و سه ضلع هر مثلث اجزای اصلی آن می گویند.

ب) اجزای فرعی: میانه ، ارتفاع ، نیمساز ، عمود منصف ، قاعده و … اجزای فرعی مثلث هستند.

 

ارتفاع:

خطی که از یک رأس بر ضلع مقابل یا امتداد آن عمود  می شود. (AH ارتفاع)

اسلاید ۷ :

 تساوی مثلث ها:

دو مثلث که بر هم منطبق شوند و کاملاً یکدیگر را بپوشانند با هم مساوی هستند. ما با داشتن فقط سه جزء از اجزای اصلی دو مثلث می توانیم ثابت کنیم که دو مثلث با هم برابرند. این سه جزء اصلی باید به صورت زیر باشد:

حالت اول: دو ضلع و زاویه بین آن ها (ض ز ض)

حالت دوم: دو زاویه و ضلع بین آن ها (ز ض ز)

حالت سوم: سه ضلع مساوی (ض ض ض)

 

 

مطالب فوق فقط متون اسلاید های ابتدایی پاورپوینت بوده اند . جهت دریافت کل ان ، لطفا خریداری نمایید .
PowerPointقابل ویرایش - قیمت 8900 تومان در 11 صفحه
سایر مقالات موجود در این موضوع
دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد