whatsapp call admin

تحقیق در مورد ریاضی و هنر

word قابل ویرایش
10 صفحه
8700 تومان
87,000 ریال – خرید و دانلود

ریاضی و هنر

چکیده :
به تقریب همه دانش ها به طور کم و بیش از ریاضیات استفاده می کنند . قانون های دانش های پایه ، مکانیک ، نجوم ، فیزیک و تا اندازه زیادی شیمی به طور معمول به وسیله فرمول بیان می شود و نظریه های آنها زمانی پیشرفت می کند که از دستگاه های ریاضی به طور گسترده ای استفاده شود بدون ریاضیات پیشرفت این دانش ها ممکن نیست . علاوه بر این ریاضیات در هنر نقش اساسی دارد .

مقدمه :
سرچشمه زنده بودن ریاضیات در اینجاست که مفهوم ها و نتیجه های آن با همه انتزاعی بودنشان ناشی از واقعیت است و کابرد فراوانی در سایر دانش ها ، در صنعت و همه زمینه های مربوط به زندگی بشری پیدا می کند و این مهمترین مطلب برای درک ریاضیات است . با این وجود کم نیستند کسانی که ریاضیات را دانشی دشوار و دست نیافتنی و در ضمن خشک و خشن می پندارند و به همین مناسبت ، با یک ریاضی دان و معلم ریاضی با احتیاط برخورد می کنند

. چرا که باید آدمی عبوس و بی احساس و بی ذوق باشد که دور از زندگی و جامعه و بی توجه به نیازهای مادی و معنوی روزگار خود در کنجی می‌نشیند و با نمادها و رابطه ها و شکل های ساخته خود ، هراسی شناخته در دل دیگران به وجود می آورد . بی تردید سخت گیری های بی جا یا به جای برخی از معلمان ریاضی و بی‌مضمونی و گاهی زشتی کتابهای درسی ریاضیات ، در این باره نقش جدی داشته باشد ولی دلیل اصلی این داوری های نادرست را باید در جای دیگر جستجو کرد .
بحثی در مورد زیبایی ریاضیات :
زیبایی ریاضیات فرعی بر آن نیست ، بلکه یک خصوصیت اصلی ریاضیات است می توانیم ملاکهایی بدست دهیم که اکثریت غریب به اتفاق ریاضی دانان برای تشخیص زیبا و زشت از یکدیگر به کار می برند . مهم ترین اینها عبارتند از : غیرمنتظره بودن (نظیر وجود تابعی از R به R که همه جا پیوسته است ولی هیچ جا مشتق پذیر نیست) قدرت ایجاد ارتباط بین شاخه های ریاضیات و توانایی

نمایش مشابهت ها در ریاضیات (مانند گروه گالوای یک میدان) سادگی برهان (نظیر اینکه مجموعه اعداد اول نا متناهی است) اختصار در بیان ، کاربرد پذیری در علوم و مهندسی مانند (وجود یکتایی جواب معادلات دیفرانسیل با شرایط اولیه) عمق و کلیت به این معنا که مطلب مورد نظر تکیه گاه ساختارهای ریاضی مختلف و ایجاد کننده سؤالات جدید باشد یا در اثبات قضایای دیگر به کار رود و یا نمونه بارز دسته ای از قضایای شبیه به هم باشد . (۲ ، صفحه ۷۵)

یک سؤال اساسی این است که چگونه ریاضی دانان توانسته‌اند علمی زیبا را که عمیق ترین معرفت بشری شمرده می شود بیافرینند ؟
در پاسخ باید گفت سختگیری ، بدون بخشش کوچکترین خطاها ، در کنار روش و معیارهای منطقی آنها ، به همراه جدیت، خلاقیت ، به غایت اندیشیدن ، و نیز بلند پروازی و جسارت شکستن هر چه موجود است صرف نظر از تقدس مطلب یا ارجمندی صاحبان افکار ، عامل موفقیت ریاضی دانان در پرداختن به ریاضیات به عنوان علمی دقیق ، منسجم ، منظم ، قطعی و دارای بیانی صادق و هیجان انگیز بوده است . (۱، صفحه ۴۴)
ریاضیات انعکاس دنیای واقعی در ذهن ماست و ارائه مدل‌های مختلف ریاضی برای پدیده های گوناگون روشی برای ارائه تصویری از طبیعت است . (۳ ، فصل هشتم)

ریاضیات در دوران باستان در بستگی با نیازهای طبیعی زندگی پدید آمد و بتدریج به دستگاهی از دانش های گوناگون تبدیل شد . ریاضیات نیز همچون سایر دانش ها بازتابی از قانون‌های طبیعت است و به عنوان صلاح نیرومندی برای شناخت طبیعت و پیروزی بر آن به کار می رود ولی از آنجا که ریاضیات بیش از اندازه انتزاعی و ذهنی است رشته های جدید آن برای کسانی که ویژه کار نیستند تا اندازه زیادی قابل دسترس نیست . همین ویژگی انتزاعی بودن ریاضیات ، از روزگاران باستان پندارهای ذهن گرایانه درباره بی ارتباطی آن با طبیعت به وجود آورد .

 ریاضیات و هنر :
امروزه بسیاری از هنرمندان برای ارائه دیدگاه هایی درباره نقش هنر ، عناصر و رابطه های ریاضی را مورد کاوش قرار داده اند . قانون های مناظر و مرایا که دشواری تجسم فضایی را در نقاشی به وجود می آورد ، به وسیله هنرمندان و ریاضی دانان در یک زمان حل شد .

دانش و هنر هر دو زاییده خلاقیت فکری و عملی انسان در طول زمان و در بستگی با نیازهای روحی و جسمی اوست . دانشمند و هنرمند هر دو انسانند و آفریده های آنها هم جز برای انسان و به خاطر انسان نیست . موسیقی و ریاضیات ، هر دو بازتابی از ذهن سنجیده و نظم پذیر آدمی است و باید سرانجام به هم بپیوندند و دانش واحدی را تشکیل دهند . (۴، صفحه ۸۳)

انسان در همان حال که با الهام از نغمه های طبیعی ، به موسیقی روی می آورد و به آن خوی می گیرد ، در مسیر شناخت قانون های حاکم بر موسیقی گام بر می دارد و ساختمان موسیقی را به صورت دانشی در می آورد که مانند هر دانش دیگری بر اصل ها و قانون مندی های منطقی (به ویژه ریاضیات) استوار است .
بستگی موسیقی به فیزیک و ریاضیات از دیر باز شناخته شده است . تجزیه موسیقی ، از نقطه نظر نغمه ها ، هماهنگی‌ها، وزن ها ، شکل ها و سرانجام سازمانی که در آن وجود دارد همیشه یکی از جدی ترین مساله ها در بررسی دانش موسیقی بوده است . برای رسیدن به این هدف می توان از شاخه های مختلف ریاضیات ، مثل آمار ، نظریه انفورماسیون و نظریه گروه‌ها استفاده کرد .
سؤال این است که چرا ریاضیات و هنر تا این اندازه به هم نزدیک اند

 
اول به این دلیل که طبیعت ، سرچشمه زاینده و بی پایانی است برای انگیزه دادن به هنرمند و ریاضی دان البته دانش های تجربی هم ، از همین سرچشمه استفاده می کنند ولی آنها تنها رو به بیرون دارند و پدیده ها و روندهای طبیعی را همان گونه که وجود دارد بررسی می کنند و قانون مندی های حاکم بر آن را کشف می کنند ، بدون آنکه در اندیشه تغییر آن باشند در حالی که هنرمند و ریاضی دان از درون خود و از ایده ها سود می جویند و حقیقت را نه تنها آن گونه که مشاهده می شود و به تجربه در می آید ، بلکه آن طور که باید باشد و در تخیل و آرزوی آدمی است ، می بینند . هنرمند و ریاضی دان با مراجعه به احساس و تجربه درونی خود با دستگیره (معرفت شهودی)

می خواهند به یاری جابه جایی ها و تبدیل ترکیب ها، (حقیقت موجود) را چه در عرصه طبیعت و چه در عرصه اجتماع و زندگی انسانی به صورت (حقیقت ایده آل) در آورند و به همین جهت بازتاب دهنده انسانی‌ترین جنبه های زندگی بشر هستند .

دوم به این دلیل که هنر و ریاضیات ، هر دو به غایت انسانی اند ، هر دو کمال و ایده آل را می جویند و هر دو شیفتگی و عشق را می ستایند . ریاضیات در عین حال به گونه شگفت انگیزی انسانی است و کمتر از هر جای دیگری ضرب المثل (دو دو تا چهار تاست) در آن صدق می کند . ریاضیات همیشه و همه جا بلندگوی این شعار است که فعالیت و استعداد آدمی بی پایان است و مرزی نمی شناسد .

در واقع نوعی شباهت واقعی ـ نه خیالی ـ بین کار ریاضی دان و هنرمند مثلاٌ نقاش وجود دارد . اولی بدون توانایی ارائه استدلال عمیق و دومی بدون مهارت‌های فنی نمی تواند یک ریاضی دان خوب یا یک نقاش خوب باشد.(۲ ، صفحه ۶۱)

نغمه ها و آواهای موجود در طبیعت ، الهام دهنده نخستین سازها و ترانه ها به موسیقی دانان عهد کهن بوده است و سپس با کشف قانون های ریاضی حاکم بر این نغمه ها و ترانه ها به وسیله ریاضی دانان و تلاش برای روشن کردن امکان هایی که در زمینه جابه جایی ، تغییر و ترکیب بر این قانون های ساده طبیعی وجود دارد ،گونه های بسیار متفاوت و دل انگیز موسیقی به وجود می آید . کسانی که با ریاضیات کار می کنند می دانند که برای بسیاری از مسأله ها راه حل های عادی و کلیشه ای وجود دارد . وقتی شما با چنین مسأله هایی روبرو هستید چه خودتان آنها را

حل کنید و چه از زبان دیگری بشنوید یا در کتابی ببینید هیچ حالت خاصی در شما ایجاد نمی شود ولی گاه به مسأله ای بر می‌خورید که هم چون دری مستحکم در برابر شما پایداری می کند و از هر سمتی به آن حمله کنید ناکام می شوید ولی ناگهان جرقه ای ذهن شما را روشن می‌کند . عجب ! پس این طور ! چه زیبا ! و مسأله حل می‌شود .

در ریاضیات هر راه حلی که نامنتظره و در عین حال عینی‌تر ، قابل فهم تر ساده تر و کوتاه تر باشد ، زیباترین راه حل به شمار می آید و مگر در هنر چنین نیست ؟ هنر شاعر در این است که منظور خود را در چند واژه خوش آهنگ و به صورتی ملموس و قابل فهم و ساده به شما منتقل می کند اگر شعر ملموس بودن خود را از دست بدهد و معنای آن چنان پشت استعاره ها پنهان باشد و کسی از آن سر در نیارد ، شعر نیست ، بلکه بازی با کلمه هاست ،

شعر وقتی زیباست که مانند راه حل زیبای یک مسأله ریاضی ، شگفتی آور و در عین حال ملموس ، قابل فهم ، ساده و کوتاه باشد . در ریاضیات بسیاری از معماها و چیستان ها راه حلی زیبا دارند همچنین مسأله های منطقی ، مسأله های مربوط به تقسیم یک مایع به دو قسمت مساوی به وسیله سه ظرف با حجم های مختلف و یا پیدا کردن سکه تقلبی در بین چند سکه با کمترین استفاده از ترازو می تواند راه حلی زیبا و هنری داشته باشد . در بین مسأله های نظری ریاضی

هم چنین مسأله هایی وجود دارد . اینها مسأله هایی هستند که از راه و روش عادی با یک نوع الگوریتم نمی توانند حل شوند و برای حل آنها راهی ابتکاری اندیشید بنابراین حل مسأله هایی از این قبیل می تواند در بالا بردن درک هنری و اندیشه به فرد یاری رساند . (۴ ، صفحه ۱۶ و ۱۷)
آیا به واقع ، خشکی و بی ذوقی و خشونت ، در ذات ریاضیات است ؟
اگر این را بپذیریم که تصور و خیال ، یکی از سرچشمه های آفرینش هنری است آن وقت ناچاریم قبول کنیم که در ریاضیات هم ، دست کم عنصرهای زیبایی و هنر وجود دارد چرا که مایه اصلی کشف های ریاضی همان تصور و خیال است .
باید بپذیریم که شهد ریاضیات به کام برخی تلخ و شرنگ می نماید ، گناهش بر عهده ما معلمان ریاضی است که کتاب ریاضی را (زشت و تلخ) مطرح می کنیم .
اگر با ابروانی درهم وارد کلاس می شویم لحنی مصنوعی و آمرانه به خود می گیریم ، پیوسته دشواری درس های ریاضی را به رخ دانش آموزان می کشیم ، درس های خود را بی هیچ مقدمه ای ، با شکل و دستور بی جان آغاز می کنیم و به احتمالی با خطی بد و نامرتب و شکل هایی درهم و با بیانی نارسا و کلیشه ای تخته سیاه را پی در پی پر و خالی می کنیم دانش آموزان را به حساب نمی آوریم و از آنها نظر نمی خواهیم … آن وقت نباید انتظار داشته باشیم که دیگران

نسبت به ریاضی نظری موافق داشته باشند . باید بپذیریم کتاب های درسی ریاضی ، اغلب به وسیله کسانی تنظیم شده اند که نه به روان شناسی اجتماعی توجه ای داشته اند و نه ذوق و استعداد و نیاز روحی جوانان را به حساب آورده اند و اینجا تنها معلم است که می تواند کمبودها و نارساییها را جبران کند ، زیبایی های دانش ریاضی را نشان دهد و حتی از طریق درس های ریاضی ذوق و استعداد هنری دانش آموزان را بارورتر کند . در واقع ، تمامی عرصه ریاضیات سرشار از زیبایی و هنر است ، زیبایی ریاضیات را می توان ، در شیوه بیان موضوع ، در طرز نوشتن و ارائه آن در استدلال های منطقی آن ، در رابطه آن با زندگی و واقعیت ، در سرگذشت پیدایش و تکامل آن و در خود موضوع ریاضیات مشاهده کرد.

درس های ریاضی می تواند نقش عمده ای در شکوفایی زیبا شناسی داشته باشد و معلم باتجربه می تواند ، از هر فرصتی برای تقویت درک هنری دانش آموزان استفاده کند و ظرافت بیشتری به روحیه زیبا شناسی آنها بدهد . کودکان و جوانان هر چه زیبا و جالب را دوست دارند و در ریاضیات ، موضوع های جالب و زیبا فراوان است .

ریاضیات دانشی است منطقی ، دقیق و قانع کننده و همه بخش های آن مثل حلقه های زنجیر به هم پیوسته اند . سرچشمه تأثیر احساسی و هنری ریاضیات را باید در قطعی بودن نتیجه گیری ها و عام بودن کاربردهای آن ، و همچنین در کامل بودن زبان ریاضیات و شاعرانه بودن تاریخ آن و در مسأله‌های معمایی و سرگرم کننده آن جستجو کرد .

 نتیجه گیری :
احساس دانش آموز تا حد زیادی ، به کار حافظه ای او مربوط می شود اگر تدریس معلم طوری باشد که دانش آموز نسبت به درس های ریاضی بی تفاوت نباشد و اگر موضوع درس علاقه او را جذب کند آنوقت می تواند هر چه را لازم باشد ، به موقع خود و بدون صرف نیروی زیادی به یاد آورد . حافظه انسان چیزی را که با احساس و تمایل او تطبیق نکند ، خیلی زود از دست می دهد . تنها در حالتی خاطره ای عمیق باقی می ماند که عقل و احساس ، هر دو بر آن صحه گذاشته باشد . خیلی خوب است که ضمن درس و متناسب با موضوع آن شعر مناسبی خوانده شود و یا با

استفاده از تجربه سال های گذشته نمونه های از اشتباه دانش آموزان در قالبی طنزآلود به آنها یادآوری شود و یا با استناد به تاریخ پیش آمدهای جالب و مربوط به موضوع درس پیش کشیده شود ، ولی همه اینها باید به نحوی به خود مطلب ریاضی مورد بحث ، ارتباط داشته باشد و موجب بالا رفتن آگاهی دانش آموزان و توجه بیشتر آنها نسبت به آن مطلب باشد.

تأثیر احساسی بر دانش آموزان تا حد زیادی به نحوه تدریس معلم بستگی دارد . معلم باید با دقت و روشنی کامل شرح دهد ، با طرح پرسش ها و مسأله های به موقع ، دانش‌آموزان را به فکر وادارد ، مسیرهای درست را از مسیرهای نادرست احتمالی جدا کند ، کوتاه ترین و منطقی ترین (یعنی زیباترین) راه را نشان دهد و سرانجام ، فایده درس و کاربردهای آن را به صورت عینی و قابل لمس مشخص کند .
ادبیات ریاضی می تواند در این زمینه ها یاری زیادی به معلمان برساند . باید دانش آموزان را با مقاله ها و کتاب های خواندنی آشنا کرد کتابهایی که علاوه بر آشنایی دانش آموزان با شیوه کار دانشمندان ، راه درست زیستن و انسان بودن را هم ، به آنها می آموزد .

نظم در کار تأثیر تربیتی زیادی دارد ، معلم باید به دانش‌آموزان خود ، راه درست نوشتن ، پاکیزه نوشتن و منظم نوشتن را بیاموزند . اگر احساس کند دانش آموز معنای جمله یا واژه ای را نمی داند از او بخواهد تا مضمون ریاضی آن را شرح دهد و خود ، برای دقیق تر کردن آنها به او کمک کند .
واداشتن دانش آموزان به مطالعه کتاب ها یا مقاله هایی که به فلسفه ریاضیات یا سرگرمی

ریاضی پرداخته اند می تواند برای بالا بردن اندیشه ریاضی و هم حس زیبا شناسی آنها بسیار مفید باشد . طبیعت سرچشمه بی پایانی برای درک موضوع های ریاضی است ، از این سرچشمه برای ایجاد انگیزه در دانش آموزان و برای ملموس کردن ریاضیات باید استفاده کرد . آگاهی ، ذوق و تسلط معلم می تواند هر موضوع ساده یا بغرنج ریاضی را ، به مضمونی برای درک بهتر قانون های موجود در طبیعت و در ضمن برای ظرافت بخشیدن به احساس هنری و زیبایی شناسی
که در هر انسانی وجود دارد تبدیل کند .

 منابع :
۱ـ رنیی ، آلفرد ، گفت و شنودهایی در ریاضیات ، ترجمه سعید قهرمانی ، انتشارات خوارزمی ،تهران ، ۱۳۷۳
۲ـ هاردی ، گ .ه ، دفاعیه یک ریاضیدان ، ترجمه سیامک کاظمی ، سازمان انتشارات و آموزش انقلاب اسلامی ، تهران ، ۱۳۷۳
۳ـ رایشنباخ ، هانس ، پیدایش فلسفه علمی ، ترجمه موسی اکرمی ، انتشارات علمی و فرهنگی ،تهران ، ۱۳۷۱
۴ـ شهریاری ، پرویز ، ریاضیات و هنر ، انتشارات پژوهنده ، تهران ، ۱۳۸۱

زیبایی و ریاضیات :
طبیعت ، سرچشمه زاینده و بیپایانی است برای انگیزه دادن به هنرمند و ریاضیدان. آنها از درون خود و از ایدهها سود میجویند و حقیقت را نه تنها آن گونه که مشاهده میشود، بلکه آن که باید باشد و آرزوی آدمی است، میبینند. هنر و ریاضیات هر دو کمال و ایدهآل را میجویند.

کم نیستند کسانی که ریاضیات را دانشی دشوار و دست نیافتنی و در ضمن خشک و خشن میپندارند و به همین مناسبت ، ریاضیدان و معلم ریاضی را فردی عبوس ، بیاحساس و بیذوق میپندارند و از اینکه کسی که سر و کار و رشتهاش ریاضیات است، اهل ذوق و هنر و شعر و موسیقی باشد و از آن لذت ببرد، متحیر میشوند. آیا به واقع هنر و ریاضیات ، یا به عبارت دیگر ، زیبایی و ظرافت و ریاضی دو مقوله متضاد و دور از هم و ناسازگارند؟ آیا علاقه به ریاضیات و تخصص داشتن در آن ، به معنای بیذوقی ، بیاحساسی و دور بودن از زندگی است؟ انسان ترکیبی از

احساس ، عاطفه و تاثیر پذیری از یک طرف و اندیشه و خرد و داوری منطقی از طرف دیگر است.
در واقع انسان ، مجموعهای یگانه از جان و خرد است. احساس و منطق را با هیچ نیرویی نمیتوان از هم جدا کرد. به قول هوشنگ ابتهاج عشق بیفرزانگی ، دیوانگی است. هر انسانی از تماشای چشم انداز یک دامنه سر سبز آرامش مییابد و در عین حال به فکر فرو میرود.شاعر احساس درونی خود را با شعر و نقاش با قلم و بوم بیان میکند. گیاه شناس در پی گیاه مورد نظر خود و زبان

شناس در پی یافتن ریشه نامگذاری گیاه و داروشناس در جستجوی ویژگیهای درمانی آن است و ریاضیدان نحوه قرار گرفتن برگ و گلبرگها یا اندازهها و شکلها را مورد مطالعه قرار میدهد. ولی هم گیاه عضوی یگانه است و هم انسان پس علت این گوناگونی در رابطه بین گیاه و انسان ، وجود جنبههای گوناگون و گسترده انسان و تجلی آنها در شرایط مختلفی است.

زیبایی و ریاضیات :
طبیعت ، سرچشمه زاینده و بیپایانی است برای انگیزه دادن به هنرمند و ریاضیدان. آنها از درون خود و از ایدهها سود میجویند و حقیقت را نه تنها آن گونه که مشاهده میشود، بلکه آن که باید باشد و آرزوی آدمی است، میبینند. هنر و ریاضیات هر دو کمال و ایدهآل را میجویند.

کم نیستند کسانی که ریاضیات را دانشی دشوار و دست نیافتنی و در ضمن خشک و خشن میپندارند و به همین مناسبت ، ریاضیدان و معلم ریاضی را فردی عبوس ، بیاحساس و بیذوق میپندارند و از اینکه کسی که سر و کار و رشتهاش ریاضیات است، اهل ذوق و هنر و شعر و موسیقی باشد و از آن لذت ببرد، متحیر میشوند. آیا به واقع هنر و ریاضیات ، یا به عبارت دیگر ،

زیبایی و ظرافت و ریاضی دو مقوله متضاد و دور از هم و ناسازگارند؟ آیا علاقه به ریاضیات و تخصص داشتن در آن ، به معنای بیذوقی ، بیاحساسی و دور بودن از زندگی است؟ انسان ترکیبی از احساس ، عاطفه و تاثیر پذیری از یک طرف و اندیشه و خرد و داوری منطقی از طرف دیگر است.
در واقع انسان ، مجموعهای یگانه از جان و خرد است. احساس و منطق را با هیچ نیرویی نمیتوان از هم جدا کرد. به قول هوشنگ ابتهاج عشق بیفرزانگی ، دیوانگی است. هر انسانی از تماشای

چشم انداز یک دامنه سر سبز آرامش مییابد و در عین حال به فکر فرو میرود.شاعر احساس درونی خود را با شعر و نقاش با قلم و بوم بیان میکند. گیاه شناس در پی گیاه مورد نظر خود و زبان شناس در پی یافتن ریشه نامگذاری گیاه و داروشناس در جستجوی ویژگیهای درمانی آن است و ریاضیدان نحوه قرار گرفتن برگ و گلبرگها یا اندازهها و شکلها را مورد مطالعه قرار میدهد. ولی هم گیاه عضوی یگانه است و هم انسان پس علت این گوناگونی در رابطه بین گیاه و انسان ، وجود جنبههای گوناگون و گسترده انسان و تجلی آنها در شرایط مختلفی است.

تاریخچه ارتباط ریاضیات و هنر :
در دوران رنسانس ، نقاشان بزرگ ، ریاضیدان هم بودند. آلبرتی (۱۴۷۲ – ۱۴۰۴) نخستین نیاز نقاش را هندسه میدانست. او بود که در سال ۱۴۳۵ میلادی ، اولین کتاب را درباره پرسپکتیو نوشت. نقاشان و هنرمندان برای جان دادن به تصویرها و القای فضای سه بعدی به آثار خود ، به ریاضیات روی آورند. بنابراین همه نقاشان دوره رنسانس نظیر آلبرتی ، دیودر ، لیوناردو داوینچی ، ریاضیدانانی هنرمند یا هنرمندانی ریاضیدان بودند. دزارک که خود ، معماری هنرمند بود به خاطر همین نیاز نقاشان و با اثبات قضیهای که به نام خود او معروف است، هندسه تصویری را بنیان نهاد و بعد از آن رفته رفته اصول بیشتری از ریاضیات تایید شد.

چرا ریاضیات و هنر تا این اندازه به هم نزدیکند؟
طبیعت ، سرچشمه زاینده و بیپایانی است برای انگیزه دادن به هنرمند و ریاضیدان. آنها از درون خود و از ایدهها سود میجویند و حقیقت را نه تنها آن گونه که مشاهده میشود، بلکه آن که باید باشد و آرزوی آدمی است، میبینند. هنر و ریاضیات هر دو کمال و ایدهآل را میجویند.
ریاضیات کلید طلایی برای زیبایی شناسی :

طبیعت عنصر تقارن را عنوان نشانه زیبایی به هنرمند تلقین میکند و سپس ریاضیدان با کشف قانونمندیهای تقارن به مفاهیم شبه تقارن , تقارن لغزنده میرسد و کوبیسم را به هنرمند (نقاش ، شاعر یا موسیقیدان) تلقین میکند. نغمهها و آواهای موجود در طبیعت الهام دهنده ترانههای هنرمندان بوده و ریاضیدانان با کشف قانونهای ریاضی حاکم بر این نغمهها و تلاش در جهت تغییر و ترکیب آنها گونههای بسیار متفاوت و دل انگیزی در موسیقی آفریدهاند. هر زمان که محاسبه درست ریاضی در نوشتههای ادبی رعایت شده، آثار جالب و ماندگار و نزدیک به واقعیت و قابل قبول برای مخاطب خلق شده است. یکی از نمونههای این مساله رعایت توجه صحیح آندره یه ویچ در افسانه ثروتمند فقیر به محاسبات ریاضی در داستان خود میباشد (البته بدون وارد کردن محاسبات عددی) که آن را به اثری ماندگار و قابل پذیرش تبدیل کرده است. ترسیمهای هندسی و نسبت زرین کمک شایانی به هنرمندان معمار و برج ساز و میکند.

زیبایی ریاضیات در کجاست؟
در واقع تمامی عرصه ریاضیات سرشار از زیبایی و هنر است. زیبایی ریاضیات را می توان در شیوه بیان موضوع ، در طرز نوشتن و ارایه آن در استدلالهای منطقی آن ، در رابطه آن با زندگی و واقعیت ، در سرگذشت پیدایش و تکامل آن و در خود موضوع ریاضیات مشاهده کرد. یکی از راههای شناخت زیباییهای ریاضیات (بخصوص هندسه) آگاهی بر نحوه پیشرفت و تکامل است. جنبه دیگری از زیبایی ریاضیات این است که با همه انتزاعی بودن خود ، بر همه دانشها حکومت میکند و جز قانونهای آن ، همچون ابزاری نیرومند دانشهای طبیعی و اجتماعی را صیقل میدهد، به پیش میبرد، تفسیر میکند و در خدمت انسان قرار میدهد.

زیبایی مسایل ریاضی
برای بسیاری از مسایل ریاضی راه حلهای عادی وجود دارد که وقتی اینگونه مسایل را (با این روشها) حل میکنید، هیچ احساس خاصی به شما دست نمیدهد و حتی ممکن است تکرار آن شما را کسل کند. ولی وقتی به مسالهای برمیخورید که همچون دری مستحکم در برابر شما پایداری میکند و از هر سمتی به آن حمله میکنید ناکام میشوید زمانی که ناگهان جرقهای ذهن

شما را روشن میکند عجب! پس اینطور! چه زیبا!و مساله حل میشود. در ریاضیات اغلب از اصطلاح زیباترین راه حل یا زیبایی راه حل استفاده میکنیم. ولی چرا یک راه حل مساله ما را تنها قانع و راضی میکند در حالی که دیگری شوق ما را برمیانگیزد و شجاعت فکر و ظرافت روش را آن موجب شگفتی ما میشود؟ راه حل زیبا باید تا حدی ما را به شگفتی وا دارد ولی تنها وجود یک جنبه نامتعارف و غیر عادی زیبایی استدلال ریاضی را روشن نمیکند، بلکه باید عینیت نیز داشته باشد

.
هم ریختی نمونه با پدیده مورد نظر و سادگی درک نمونه و سادگی کار کردن با آن ، مفهوم عینی بودن را تشکیل میدهد. با بکار گرفتن عینیت ، زبان دشوار پدیده را به زبان سادهتر مدل عینی ترجمه میکنیم و نتایج لازم را بدست میآوریم.وقتی که دانش آموزی میخواهد به تنهایی مساله دشواری را حل کند نمونه عینی پدیدهای را باید در مساله شرح دهد، برای خودش بسازد، دشواری مسالههای

نامتعارف در این هست که برای حل آنها باید بطور مستقل نمونه همریخت (مساله هم ارز) را انتخاب کرد به نحوی که از پدیده نخستین سادهتر باشد. نامتعارف بودن این نمونه و نامنتظر بودن آن به معنای زیبایی و ظرافت راه حل است. زیبایی حل یک مساله را وقتی احساس میکنیم که به کمک یک نمونه عینی بدست آید و در ضمن نامنتظ

ر باشد که بطور مستقیم به ذهن هر کسی نمیرسد و به زحمت در دسترس قرار میگیرد.
رابطه زیباشناسی ریاضی
نامنتظر بودن + عینی بودن = زیبایی
این رابطه به فرهنگ ریاضی مربوط میشود و کسی که چنین فرهنگی دارد، دید گستردهتری دارد، با کمترین نشانهها ، شباهت بین زمینههای مختلف ریاضی را پیدا میکند و به کشف رابطه بین آنها و فرمولبندی و استفاده از روابط گوناگون بین آنها میپردازد. و بدین ترتیب مساله را نامتعارفتر و زیباتر از بقیه حل میکند و با سادهترین و کوتاهترین و در عین حال جالبترین روش به جواب مساله میرسد و موجب شگفتی و لذت خود و بقیه میگردد.

 

هنر و آموزش ریاضیات
انواع هنر همچون ابزار قدرتمندی هستند که می توانند به رویارو شدن با دشواری های ریاضی به بهترین شکل ممکن کمک کنند. دشواریهایی که هدف از تسهیل آنها بهبود یاددهی و یادگیری می باشد. نقش آموزشی هنر نه تنها در بهبود کیفیت فهم مساله بسیار حیاتی و اساسی است بلکه برای متحول کردن طرز تفکر به شیوه های گوناگون دارای قدرت و ظرافتی است که در سایر موضوعات آموزشی چنین قدرتی را سراغ نداریم. مطالعات و بررسی ها نشان داده اند که انواع هنر مهارتهای تفکر انتقادی مربوط به طرح و حل مساله – تجزیه و تحلیل – ترکیب – ارزشیابی و تصمیم

گیری در مورد پارامترهای مساله را تحریک و تقویت می کنند. تربیت هنری موجب پرورش توانایی تعبیر و فهم نمادهای پیچیده می شود که نمونه بارز آن آشنایی با نمادهای ریاضی می باشد. همچنین در پرورش خلاقیت نقش محوری را ایفا می کند و موجب پرورش مهارت به تصویر کشیدن ذهنی مساله می شود و آموزنده را توانمند می کند تا روشهای حل غیر متعارف و غیر سنتی را به ذهن بیاورد. لازم به یادآوری است که مطالعه و تولید اثر هنری به خودی خود دارای اعتبار است . ازین جهت شکل گیری آموزش ریاضیات به صورت هنری هویت فرهنگی را در چارچوب هدفمندی حفظ و نگهداری می کند و بالعکس به کارگیری هنر به بهترین شکل در فهم و ادراک مطالب کمک شایانی می کند.

با ذکر این مطالب و روشن شدن ارزش آموزش ریاضی مبتنی بر هنر تنها اشاره به این نکته کافیست که آموزش هنری ریاضیات امری بنیادی به خصوص در مقاطع اولیه تحصیلی میباشد و بکارگیری آن نباید امری تجملی تلقی گردد

رابطه ریاضیات و هنر
اهمیت فوق العاده ای که ریاضیات ، در جامعه ی امروزی و در فعالیت گوناگون ترین تخصص ها دارد، بر کسی پوشیده نیست . باوجود این ، خیلی زیاد نیستند کسانی که علاقمند به ریاضیات باشند. البته تنها کسانی که کار و فعالیتشان به ریاضیات مربوط می شود ، علاقمند به ریاضیات

نیستندبلکه کم هم نیستند مشتاقانی که ساعت های فراغت خود را ، با ریاضیات می گذرانند. همه ی این ها چه حرفه ای ها و چه علاقمندان ، نه تنها فایده و اهمیت ریاضیات را می شناسند بلکه در ضمن ، به ریاضیات شوق می ورزند و می توانند زیبایی و ظرافتی که در مسأله ها ، قضیه ها و روش های ریاضی وجود دارد را احساس کنند .

احساس و منطق را با هیچ نیرویی نمی توان از هم جدا کرد و هر جدایی ساختگی منجر به تحریف هر دوی آنها می شود . هر احساس اگر احساس واقعی باشد، خردمندانه است چراکه احساس واقعی نمی تواند جدا از اندیشه و خرد آدمی پدید آید.

ارتباط هنر و ریاضی :
هر انسانی از تماشای چشم انداز یک دامنه ی سر سبز آرامش خود را باز می یابد ، در عین حال ، به فکر فرو می رود . شاعر احساس درونی خود را بیان می کند . نقاش با قلم و بوم خود تلاش می کند که دیگران را در شادی خود شریک کند .

گیاه شناس در پی گیاه مورد نظر در رده های خاصی می رود . زبان شناس می خواهد ریشه و سر چشمه ی نام گذاری گیاه و دلیل آن را پیدا کند . داروشناس در جستجوی ویژگی درمانی گیاه است و ریاضی دان نحوه ی قرار گرفتن گل و گلبرگ ها یا اندازه و شکل ها را مورد مطالعه قرار می دهد . ولی هم گیاه عضوی یگانه است و هم انسان و اگر بخواهیم برخورد انسان با گیاه را بررسی کنیم ناچاریم ، به همه ی این جنبه ها توجه داشته باشیم .

ریاضیات و رابطه آن با هنر :

” اشر” نقاش معروف هلندی در سال ۱۹۷۱ میلادی در سن ۷۲ سالگی و یک سال پیش از مرگ خود نوشت :
« وقتی که هوشمندانه با رمز و راز های دور و بر خود برخورد کردم و وقتی به تجزیه و تحلیل مشاهده های خود پرداختم ، به ریاضیات رسیدم . من آموزش جدی در دانش ندیده ام ولی گمان می کنم بیش تر با یک ریاضی دان وجه مشترک داشته باشم تا با یک هنرمند . »

و ” رودن” (۱۸۴۰- ۱۹۱۷ ) مجسمه ساز مشهور فرانسوی می گوید :
« من یک رویا پرداز نیستم ، بلکه یک ریاضی دان ام . مجسمه های من تنها به خاطر این خوب اند که ساخته و پرداخته ی اندیشه ی ریاضی اند . »
از آن طرف “ج.ه هاردی” ریاضی دان انگلیسی معتقد است :

« معیار ریاضی دان مانند معیار نقاس یا شاعر ، زیبایی است . اندیشه ها هم مانند رنگ ها یا واژه ها باید در هماهنگی کامل و سازگار با یکدیگر باشند . زیبایی نخستین معیار سنجش است . »

جایگاه هنر در درس ریاضی :

اگر این را بپذیریم که ، تصور و خیال ، یکی از سرچشمه های اصلی آفرینش های هنری است ، آن وقت ناچاریم قبول کنیم که ، در ریاضیات هم ، دست کم عنصر های زیبایی و هنر وجود دارد چرا که مایه ی اصلی کشف های ریاضی ، همان تصور و خیال است .
به قول ولادیمیر ایلیچ نویسنده ی « دفاتر فلسفی » ، تصور و خیال « حتی در ریاضیات هم لازم است ، حتی کشف حساب دیفرانسیل و انتگرال هم ، بدون تصور و خیال ، ممکن نبود . »
با هیچ نیرنگی ، نمی توان از کشش انسان ها به سمت زیبایی ها جلوگیری کرد و آن چه زشت و نازیبا است را جانشین زیبایی ها کرد

آدمی ، از همان روزهایی که می شنود ، می بیند و درک می کند ، از موسیقی و تقاشی و شعر لذت می برد و چه به صورت لالایی مادر باشد یا آهنگ گوش نواز چایکووسکی ، چه بیتی عامیانه و کوچه باغی باشد یا سرودی از لسان الغیب ، چه هنرمندانه قالی های دست باف باشد و چه ظرافت ها و رنگ های چشم نواز بهزاد و کمال الملک ، همه جا انسان را به سوی خود می کشاند و غرق در آرامش و لذت می کند . ولی همه ی این ها ، یک شرط اساسی دارد و آن ، این است که با آفریده ای از یک استاد هنرمند سروکار داشته باشید و گرنه ، حرکت ناشیانه ی آرشه بر

ویلون ، روح شما را می آزارد و ردیف بی ربط واژه های شعر سخن ناشناس ، شما را بیزار و کسل کند . در واقع تمامی عرصه ی ریاضیات ، سرشار از زیبایی و هنر است . زیبایی ریاضیات را می توان ، در شیوه ی بیان موضوع ، در طرز نوشتن ارائه ی آن ، در استدلال های منطقی آن ، در رابطه ی آن با زندگی و واقعیت ، در سر گذشت پیدایش و تکامل آن و در خود موضوع ریاضیات مشاهده کرد .

هندسه ، به مفهوم عام آن ، زمینه ای است سر شار از زیبایی ، می گویند . افلاطون ، تقارن را مظهر و معیار زیبایی می دانست و چون ، گمان می کرد تنها هندسه است که می تواند رازهای هندسه را بر ملا کند و از ویژگی های آن برای ما سخن بگوید ، به هندسه عشق می ورزید و بر سر در آکادمی خود نوشته بود : « هر کس هندسه نمی داند وارد نشود . »

و هنوز هم ، با آن که هنر کوبیسم بسیاری از سنت ها را درهم شکست و زیبایی های خیره کننده ی نا متقارنی را آفرید ، باز هم از قدر و قیمت تقارن چیزی نکاست ، و چه مردم عادی و چه صاحب نظران ، همچنان اوج زیبایی را در تقارن و تکرار می بینند . شاید بتوان گفت که کوبیسم ، مفهوم زیبایی ناشی از تقارن را ، گسترش داده و تکامل بخشیده است .

هندسه ، همچون دیگر شاخه های ریاضیات ، زاده ی نیازهای آدمی است ، ولی در این هم نمی توان تردید کرد که ، در کنار سایر عامل ها یکی از علت های جدا شدن هندسه از عمل و زندگی و شکل گیری آن به عنوان یک دانش انتزاعی ، کشش طبیعی آدمی به سمت زیبایی و نظم بوده است . و هرچه هندسه تکامل بیشتری پیدا کرده و عرصه های تازه ای را گشوده ، نظم و زیبایی خیره کننده ی آن ، افزون تر شده است .

از همین جا است که ، یکی از راه های شناخت زیبایی ریاضیات و به خصوص هندسه ، آگاهی بر نحوه ی پیشرفت و تکامل آن است . مفهوم نقطه و خط راست ، از کجا آغاز شد و چگونه از فراز و نشیب ها گذشت ، تا به ظرافت و شکنندگی امروز رسید . ما در طبیعت دور و بر خود ، نه تنها نقطه و خط راست هندسی ، بلکه دایره مستطیل و کره و متوازی السطوح هم به معنای انتزاعی خود نمی بینیم
این ذهن زیبا جو و در عین حال ، آفریننده ی انسان بوده است که چنین شکل ها و جسم های به غایت ظریف و زیبا را ابداع کرده است و سپس کاربرد های عملی زیبا تری هم برای آن ها یافته است .
و در همین جا است که می توان جنبه ی دیگری از زیبایی ریاضیات را جست و جو کرد . ریاضیات با همه ی انتزاعی بودن خود ، بر همه ی دانش ها حکومت می کند و جزء جزء قانون های آن ، همچون ابزاری نیرومند دانش های طبیعی و اجتماعی را صیقل می دهد و به پیش می برد ، تفسیر می کند و در خدمت انسان قرار می دهد .

با چند ضلعی های محدب منتظم ، که نمونه های جالبی از شکل های متقارن اند ، می توان تصویر های جالب و زیبایی به دست آورد . ولی جالب تر از آن ها ، چند ضلعی منتظم مقعر ، یا چند ضلعی منتظم ستاره ای اند . ساده ترین آن ها ، یعنی پنج ضلعی منتظم ستاره ای را به سادگی می توان رسم کرد . بررسی ویژگی های چند ضلعی های منتظم ( محدب و مقعر ) و بدست آوردن شکل های ترکیبی از آن ها ، زمینه ی گسترده ای برای جلب دانش آموزان ، به زیبایی های درس های ریاضی است . از آن جالب تر ، کار با چند وجهی های منتظم است .

نشان دادن فیلم ها و اسلاید ها از چند وجهی های افلاتونی و چند وجهی های نیمه منتظم ، یه ویژه اگر همراه با توضیح ساختمان بلور ها و دانه های برف باشد ، می توانند وسیله ی بسیار خوبی ، برای بیدار کردن احساس زیبایی دوستی دانش آموزان باشد .
ولی نباید گمان کرد که در اشکال نا منتظم نمی توان زیبایی ها را جست جو کرد . نسبت ها و اندازه گیری ها ، زمینه ی بسیار مساعدی است که می تواند موجب رشد احساس زیبایی شناسی دانش آموزان بشود و آن ها را به طرف ریاضیات جلب کند . مسأله های مربوط به ماکزیمم و می نیمم یکی از جالب ترین و دلکش ترین زمینه ها در هندسه است که ، نه تنها نیروی تفکر و استدلال دانش آموز را بالا می برد ، بلکه در ضمن ، احساس هنری و زیبا شناسی او را هم بیدار می نماید .
در هندسه وقتی پاره خطی را طوری به دو بخش تقسیم کنیم که مجذور بخش بزرگتر برابر با حاصل ضرب تمام پاره خط در بخش کوچکتر باشد ، می گویند که : « پاره خط را به نسبت زرین تقسیم کردیم . » تقسیم پاره خط به نسبت زرین» از دوران یونان باستان شناخته شده بوده است و ریاضی دانان یونان باستان مستطیلی را که روی این دو بخش پاره خط ساخته شود زیباترین مستطیل می دانسته اند و آزمایش فوق توانست درستی نظر ریاضی دانان باستانی را تایید کند .

درباره ی نسبت زرین باید یاد آوری کرد که از همان دوران باستان ، از این نسبت در مجسمه سازی و معماری به فراوانی استفاده می کرده اند . از همان دوران باستان ریاضی دانان در جست و جوی زیباترین راه حل برای مسأله ها بوده اند . در ریاضیات اغلب از اصطلاح زیباترین راه حل یا زیبایی راه حل استفاده می کنند . معلم ابتدا مسأله را به طریق عادی حل می کند و سپس راه حل هوشمندانه و ساده ای را برای حل مسأله وجود دارد ، به دانش آموزان نشان می دهند . از ساده ترین مسأله هایی که در دبستان مطرح می شود ، تا دشوارترین مسأله های سال آخر دبیرستان ، می توان از این شیوه استفاده کرد .

زیبایی شناسی در درس ریاضی :

علاقه به هنر و توجه به زیبایی های طبیعت و زندگی یکی از جنبه های شخصیت انسانی را تشکیل می دهد و این علاقه را می توان ، و باید از همان سال های نخست تحصیل ، شکل دادو تقویت کرد . مبارزه با زیبایی و کشاندن کودکان و نوجوانان به سمت پدیده های اندوه بار و تلاش برای دور نگه داشتن آنها از زیبایی های درون و بیرون خود ، به معنای ستیز با طبیعت انسانی آن هاست ودر بهترین صورت خود موجب یأس و سرخوردگی و یا عصیان و بی بند و باری می شود

.
درس های ریاضی می تواند نقش عمده ای در شکوفایی زیبایی شناسی داشته باشد و معلم با تجربه می تواند از هر فرصتی برای تقویت درک هنری دانش آموزان استفاده کند و ظرافت بیشتری به روحیه ی زیبا شناسی آن ها بدهد . کودکان و نوجوانان هر چیز جالب را دوست دارندو در ریاضیات ، موضوع های جالب و زیبا ،فراوان است .

ریاضیات دانشی است منطقی ، دقیق و قانع کننده و همه ی بخش های آن ، مثل حلقه های زنجیر به هم پیوسته اند. سرچشمه ی تأثیر احساسی و هنری ریاضیات را ، باید در قطعی بودن نتیجه گیری ها و عام بودن کاربردهای آن و هم چنین ، در کامل بودن زبان ریاضیات ، شاعرانه بودن تاریخ آن و در مسأله های معمایی و سرگرم کننده دانست،.

ریاضیات و صنعت
کاربردهای ریاضیات،بی اندازه زیاد و بسیار گوناگون است.در واقع به کار بردن روشهای ریاضی مرزی نمیشناسند: همه شکلهای مختلف ، حرکت ماده را میتوان با روش ریاضی بررسی کرد.البته،نقش و اهمیت روش ریاضی در حالتهای مختلف متفاوت است.هیچ طرح معین ریاضی نمیتواند از عهده بیان همه ویژگیهای پدیده های حقیقی برآید.وقتی میخواهیم پدیدهای را بررسی کنیم،شکل خاصی از آن را در معرض تحلیل منطقی قرار میدهیم،در ضمن تلاش میکنیم نکته هایی را بیابیم که،در این شکل جدا شده از پدیده واقعی وجود ندارد شکلهای تازهای پیدا کنیم که بیشتر و کاملتر، در برگیرنده پدیده ما باشد.

ولی اگر در هر گام تازه، نیاز به بررسی کیفی جهت های تازهای از پدیده باشد.روش ریاضی،خود را عقب میکشد.در این جا تحلیل منطقی همه ویژگیهای پدیده، تنها میتواند طرح ریزی ریاضی را مبهم کند.ولی اگر شکلهای ساده و پایدار یک پدیده یا یک روند بتواند تمامی پدیده یا روند را با دقت و به طور کامل بپوشاند،اما در مرزهای این شکل مشخص ،به جنبه های پیچیده و دشواری برخورد کنیم، نیاز به بررسی ریاضی و بویژه استفاده از نمادها و جستجو جوی الگو ریتم خاص برای حل آنها پیدا شود. این جاست که در قلمرو فرمانروایی روشهای ریاضی قرار میگیریم.

همان طور که از بررسی تاریخ بر می آید. آغاز حساب و هندسه مقدماتی، به طور کامل زیر تاثیر خواستهای مستقیم زندگی و عمل بود. اندیشه ها و روشهای تازه بعدی ریاضی هم، با توجه به خواستهای عملی دانشهای طبیعی (اختر شناسی، مکانیک، فیزیک و غیره)، که پیوسته در حال پیشرفت بود، شکل می گرفت. بستگی مستقیم ریاضیات یا صنعت، اغلب به صورت به کار گرفتن نظریه های موجود ریاضی در مساله های صنعتی، جلوه می کند.

ریاضیات و معماری
ریاضیات و موسیقی هر یک به نوبه خود از ابتدای خلقت در مسیر تکامل تمدن بشری نقش موثری داشته اند. ریاضیات بطور مستقیم با پیشرفت گونه های مختلف علوم تجربی، نظری، مهندسی و … در ارتباط بوده و موسیقی علاوه بر تاثیر مستقیم بر سایر هنرها، همه روزه درحال تعامل با انسان در تمام نقاط جهان است به گونه ای که امروزه از آن حتی به عنوان یک ابزار برای جهت دادن به پدیده های اجتماعی ، سیاسی و فرهنگی استفاده می شود.

*ریاضیات عقلی در مقابل موسیقی احساسی*
اما اگر ریاضیات با عقل انسان در ارتباط است، موسیقی را می توان از مهمترین هنرهایی دانست که به سادگی روح آدمی را تحت تاثیر خود قرار می دهد که خوشبختانه امروزه در جوامع مختلف به صورت بسیار زیادی با زندگی عجین شده است. همه ما حداقل یک قطعه موسیقی را از حفظ بلد هستیم و به هنگام خلوت، هنگام کار یا رانندگی و … آن را زمزمه می کنیم. حتی درصد بالایی از مردم توانایی نوازندگی و خوانندگی به صورت آماتور و یا حرفه ای را دارا می باشند. موسیقی در یک نگاه ساده هنری است که تمام مردم می توانند به سادگی با آن تعامل داشته باشند.
اما چگونه ممکن است ریاضیات که علمی کاملاً عقلی است با موسیقی که هنری کاملاً احساسی است، مشابهت هایی با یکدیگر داشته باشند و یا حتی در برخی زمینه ها هم گرایی هایی؟
تحقیقات نشان داده که موسیقی مهارت مغز در حل مسائل فکری را بیشتر میکند.
*مشخص ترین ارتباط میان موسیقی و ریاضی*
اولین دخالتی که ریاضیات می تواند در موسیقی انجام دهد از آنجا ناشی می شود که موسیقی ناشی از تکرار برخی اصوات – یا نت های موسیقی – در بازه زمان است. طول مدت نتها را می توان اندازه گرفت و به روابطی میان آنها در بازه زمان دست پیدا کرد. همانند آنچه در تحلیل ریتم های مختلف انجام می شود.

اما آیا ارتباط موسیقی و ریاضیات در همین حد یعنی مدل کردن رفتار موسیقی با کمک روابط ریاضی است؟
در بررسی (The American Mathematical Monthly شماره ۱۰۳) مشاهده شده است که بیش از ۶۸ درصد دانشجویان رشته ریاضی از کلاسهای موسیقی به عنوان دروس اختیاری برای فارغ التحصیل شدن اختیار می کنند. نتیجه این بررسی رابطه نا شناخته میان موسیقی و ریاضی را تا حد زیادی آ شکار میکند.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
word قابل ویرایش - قیمت 8700 تومان در 10 صفحه
87,000 ریال – خرید و دانلود
سایر مقالات موجود در این موضوع
  1. ali گفت:

    موضوع تحقیق:
    ریاضی و هنر به قیمت ۴۷۰۰ تومان
    به تعداد ۱۰ صفحه
    خدایش انصاف نیست

دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد