مقاله در مورد کاربرد ریاضی در شهر سازی

word قابل ویرایش
14 صفحه
8700 تومان
87,000 ریال – خرید و دانلود

کاربرد ریاضی در شهر سازی

بسم الله الرحمن الرحیم
پیشگفتار
پیشرفت عظیم علم و صنعت در قرون گذشته تا حد زیادی مرهون گسترش ریاضیات است. این گسترش را می توان به سه دوره تاریخی تقسیم نمود که هر دوره به نقطه اوجی رسیده ،سپس توقفی طولانی پیش آمده و نگاه حرکت و اوجگیری مجددا شروع شده است.

ریاضیات مدون در حدود دو هزار سال قبل از میلاد مسیح به وجود امد . لیکن ریاضیات به عنوان دانش به مفهومی که امروز برای آن قائل هستیم ، در سرزمین یونان و در قرن های پنجم و چهارم قبل از میلاد مسیح ایجاد گردید. یونانیان طی لشگرکشی های متعدد با اکتشافات ریاضی و نجومی بابلی ،آشنایی یافتند و به زودی ریاضیات در شهرهای مختلف یونان موضوع بحث های فلسفی قرار گرفت و هندسه اقلیدسی نتیجه بزرگ و اساسی این دوره است که سلطه خود را در جهان دانش بشری تا قرن ها بعد حفظ نمود . با سقوط اسکندریه توقف و رکود ریاضیات در این دوره طلایی را می توان در تاریخ به وضوح ملاحظه نمود .
قرن ها بعد ، کوشش عظیم مسلمانان شروع شد. به این کوشش و نتایج حاصل از آن متاسفانه کمتر توجه شده است ، به خصوص که این دوره همزمان با دوران بربریت غرب است . پس از استقرار اسلام در شبه جزیره عربستان و پذیرش آسان آن از طرف همسایگان و گسترش سریع آن طی قرن های اولیه ، کوشش علمی مسلمانان با ترجمه کتب علمی شروع شد . دانشمندان خارجی در سال های اخیر در مورد دستاورد های علمی مسلمین به اشارات کوچکی بسنده کرده اند . جورج سارتن در کتاب تاریخ علم خود ، قرون گذشته را در نظر گرفته و هر قرنی را به نام دانشمندی نام گذاری کرده است . در سال های اوج تمدن اسلامی و با ملاحظه رکورد علمی غ

رب در این سال ها چنین می گوید : (( اگر به دوره اول قرن یازدهم میلادی بنگریم ، این دوره نشانه اوج فکر قرون وسطی است .
رهبران بزرگ – مانند ابن یونس ، ابن هیثم ، بیرونی ، ابن سینا ، علی بن عیسی ، کرخی ، لبن جبرول ( همه مسلمانند و آخری یهودی ) – چندان فراوان بودند که دست کم برای لحظه ای مورخ را مبهوت می سازد . گرچه همه اینان مردانی ممتاز به شمار می رفتند ، دو تن از همه برتر بودند ، بیرونی و ابن سینا و به خاطر اینان بود که این عصر چنین درخشان و برجسته می نمود . این دو

تن به طریقی با هم فرق بسیار داشتند ، بیرونی مبین روحی پرتکاپو و نقاد بود و ابن سینا دارای روحی ترکیبی . بیرونی بیشتر کاشف بود و از این لحاظ به آرمان علمی جدید نزدیکتر شد. ابن سینا ذاتا یک سازمان دهنده جامع العلوم و فیلسوف محسوب می شد . و هر دو در وهله اول به یک اندازه اهل علم بودند. ….. نخستین اثر بزرگ بیرونی مقارن سال ۱۰۰۰ میلادی پدیدار شد و تا سال ۱۰۴۸ زندگی کرد و ما در نامیدن این فصل به نام عصر بیرونی کاملا محق هستیم .))
مسلمانان در این دوران پرچم دانش بشری را به دوش کشیده و در ریاضیات و سایر زمینه ها دست به ابداعات فراوانی زدند . در هر زمینه می توان نشانه هایی را بیان نمود که با اختلاف چندین قرن بعد اروپاییان با توجه به منابع اسلامی یا مستقلا ، بدان دست یافتند .
برای مثال در علم نجوم و مثلثات مسلمین پیشرفت شایانی داشتند و این موضوع در قرون ۱۷ و ۱۸ و ۱۹ نادیده گرفته می شد . مثلا رابطه معروف سینوس ها در مثلثات و مثلثات کروی به کپر نسبت می دادند . در سال ۱۲۷۰ هجری شمسی (۱۸۹۱ میلادی ) کتاب کشف القناع عن اسرار شکل القطاع تالیف خواجه نصیر الدین طوسی (۶۷۲- ۵۹۷ هجری ، قمری ، ۱۲۷۴- ۱۲۰۱ میلادی ) در قسطنطنیه چاپ و منتشر شد . انتشار این کتاب به زبان فرانسوی و آشنایی دانشمندان وقت با آن موجب شهرت جهانی برای این کتاب گردید . اروپاییان دریافتند که بسیاری از قضایای مثلثات را مسلمانان چهار صد سال جلوتر از آنها کشف کرده و مورد استفاده قرار داده اند ، از این رو در این موضوع متحدالقول شدند که کتاب کشف القناع خواجه نصیر الدین طوسی نخستین کتاب است که منحصرا در علم مثلثات جدا از سایر کتب نجوم نگاشته شده است . اروپاییان بسیاری از قظایا را که در این کتاب دیدند ، به خواجه نسبت دادند . چند سال پیش نسخه منحصر به فردی از کتاب مقالید علم الهیئه مایحدث فی سطح بسیط الکره تالیف ابوریحان بیرونی (۴۴۰- ۳۶۰ هجری قمری ) در کتابخانه مدرسه شهید مطهری به دست آمد که اروپاییان اطلاع کافی از آن ندارند ، تنها دکتر کندی با ترجمه مقدمه آن و فهرست خلاصه ای در مجله ” journal of near Eeastern studies , vol.30,1971 ” آن را به جهانیان معرفی کرد . استاد ابولقاسم قربانی در فصل هفتم کتاب وزین بیرونی نامه خود این کتاب ۴۴ صفحه ای را که می توان اولین کتاب مثلثاث مستقل موجود دانست

، معرفی می نمایند . در این کتاب ابوریحان اشاره می کند که استادش ابونصر عراقی رابطه سینوس ها در مثلثات کروی را به صورت
Sina = sin b =sin c
Sin c sin b sin a
بیان می کند . ابوریحان می پرسد که آیا می توان این رابطه را برای مثلثات در صفحه ، نیز ثابت نمود ؟ چند روز بعد ابونصر ، اثبات این را در مثلثات مسطحه بیان می کند . ابوریحان این طریقه اثبات را در این کتاب آورده و خودش نیز برای اثبات این رابطه روشی را بیان می نماید . حال ملاحظه میبه ابونصر عراقی استاد ابوریحان نسبت دهند .
زمینه های علمی فراوان دیگری می توان نشان داد که مسلمین در این دوران به آن نائل آمده ،
غربیان چندین قرن بعد بدان دست یافتند . این دوره نیز دوره ای مشخص از تاریخ دانش بشری است . پس از شکست مسیحیان در جنگ های صلیبی و آشنایی اروپاییان در این جنگ ها با دانش کشورهای اسلامی ، دوره رنسانس کم کم در غرب شروع گردید . بسیاری از کتب یونانی که قبلا به وسیله مسلمین به عربی ترجمه شده بود و همچنین کتب دانشمندان اسلامی ، به سرعت از عربی به زبان های اروپایی ترجمه می شد . برخی از این کتب سالیان دراز کتاب های درسی دانشگاه های غرب بودند . نمونه های فراوانی وجود دارند که دانشمندان غربی اطلاعات به دست آمده توسط مسلمانان را به نام خود ثبت نمودند . در این دوره نیز اروپاییان با یک تاخیر پانصد ساله نسبت به مسلمین ، وبا عنادی خاص نسبت به اسلام و اصولا دین ، دانش را گسترش دادند . طی قرن شانزدهم میلادی تغییری کند اما انقلابی در نمادهای ریاضی آغاز شد. دستگاه پرزحمت اعداد رومی به تدریج جای خود را به نمادهای اسلامی دادند . علامت های + و – را به کار برده ، مزایای سیستم اعشاری را که قبلا توسط مسلمین ابداع شده بود کم کم شناختند . در این دوره موفقیت های چشمگیر ریاضی دانان ایتالیایی ، تارتاگلیا ، کاردانو و فراری در بیان جواب های معادلات درجه دوم و سوم که تقریبا چهارصد سال جلوتر توسط خیام ابداع شده بود . موجب گسترش ریاضیات شد . و در قرن هفدهم هندسه تحلیلی و حساب دیفرانسیل و انتگرال به وجود آمد ، در حالی که هندسه اقلیدسی هنوز مقام مهمی را برای خود حفظ کرده بود . در این تاریخ اروپاییان از اشکالاتی که توسط مسلمین به اصول هندسی اقلیدسی گرفته شده بود خبر نداشتند و اصولا در این دوره عقیده یونانیان برای اتکا به اصول در علوم و استنتاج منطقی یکباره طی قرن های هفدهم و هیجدهم تا اندازه زیادی نادیده گرفته شد . در قرن نوزدهم احتیاج ضروری با استحکام نتایج حاصل ، ومیل وافر به تجدید نظر در مبانی ریاضیات پیش آمد . به خصوص در این دوره مبانی ریاضیات حساب دیفرانسیل و انتگرال و مفهوم حد که اساس دانش مذکور است مورد تجدید نظر کلی قرار گرفت . بنابر این ، قرن نوزدهم نه فقط دوران پیشرفت های جدید بوده بلکه یکی از مشخصات مهم آن بازگشت موفقیت آمیز به سوی دقت و استدلال منطقی است . این دقت و استدلال منطقی ، آرمان دو دوره قبلی به خصوص دوره اول در یونان بوده و در این دوره است که برخی ریاضیات را دستگاهی می دانند ، که بر تعاریف و اصول ساخته شده و این اصول فقط باید به تضاد نینجامند . ریاضیات امروزه در این مسیر در حرکت بوده و به سوی خلوص منطقی و تجرید پیش می رود و همه جهانیان در این پیشرفت اکنون سهیم اند . امید است که ملت های اسلامی در این روند سهم به سزایی داشته باشند .

 

کتاب حاضر برای تدریس حساب ، دیفرانسیل و انتگرال یا ریاضیات عمومی نگارش یافته است . این مبحث به عنوان ابزاری قوی در بسیاری از شاخه های علوم به کار می رود . با به کارگیری این ابزار به راحتی می توان بسیاری از مطالب کاربردی را به صورت تحلیلی بیان نمود . امروزه فراگیری کامل و دقیق ریاضیات عمومی اساس آموزش سایر قسمت های ریاضی و دروسی که بیان آنها م
مهندسی شهرسازی

دیباچه: در سال ۱۴۰۰ هجری شمسی، جمعیت کشور ما به ۱۲۰ میلیون نفر خواهد رسید که ۸۰ درصد این ۱۲۰ میلیون نفر در شهرها ساکن می‌شوند. یعنی کمتر از ۲۰ سال دیگر کشور ایران حدود ۹۶ میلیون شهرنشین خواهد داشت. حال سؤال اینجاست که آیا برای اسکان و فراهم نمودن امکانات اقتصادی، اجتماعی و فرهنگی این ۹۶ میلیون نفر برنامه‌ریزی کرده‌ایم؟ در حال حاضر چطور؟ آیا شهرهای ما از حداقل استانداردهای جهان برخوردارند؟ به راستی چه افرادی می‌توانند طرحی جامع برای شهرها و شهرک‌ها ارائه دهند و در آرامش روحی و جسمی شهرنشینان نقش مؤثری داشته باشند؟ بدون شک چنین کاری از عهده متخصصان یک رشته برنمی‌آید، بلکه برای ساماندهی یک شهر نیاز به همکاری و همفکری اقتصاددانان، جامعه‌شناسان، معماران، مهندسین عمران، جغرافی‌دانان و کارشناسان رشته‌های متعدد دیگر است.در این میان متخصص شهرسازی به عنوان سیاستگذار و مدیر متخصص ، نقش بسیار مهمی را بر عهده دارد. متخصص شهرسازی فردی است که می‌تواند در زمنیه طراحی شهری یا برنامه‌ریزی شهری فعالیت کرده و عامل توسعه شهری شود. دانش شهرسازی‌ به‌ بررسی‌ کلیه‌ تحولات‌ اجتماعی‌، اقتصادی‌، سیاسی‌ و فیزیکی‌ یک‌ شهر می‌پردازد و تلاش‌ می‌کند که‌ روابط‌ موجود در یک‌ شهر را در قالب‌ یک‌ نظام‌ هماهنگ‌، مدیریت‌ و سازماندهی‌ کند و متخصص‌ شهرسازی‌ نیز کسی‌ است‌ که‌ با مطالعه‌ و بررسی‌ روابط‌ اجتماعی‌، اقتصادی‌، سیاسی‌ و فرهنگی‌ حاکم‌ در شهر، برنامه‌ای‌ بسامان‌ و مطبوع‌ برای‌ یک‌ شهر ارائه‌ می‌دهد. برنامه‌ای‌ که‌ تصویرگر سیمای‌ شهر در آینده‌ است‌. در این‌ رشته‌ حداقل‌ ۶ محور اصلی‌ وجود دارد که‌ در برنامه‌ریزی‌ و طراحی‌ شهر سرنوشت‌ ساز است‌. این‌ ۶ محور عبارتند از:۰ ـ برنامه‌ریزی‌ شهری‌ که‌ عمدتاً بر روی‌ کاربری‌ اراضی‌ متمرکز است‌؛ یعنی بررسی‌ می‌کند که‌ ما چگونه‌ فضا و پهنه‌ شهر را به‌ فعالیت‌های‌ مختلف‌ اعم‌ از صنعتی‌، تجاری‌ و مسکونی‌ اختصاص‌ دهیم‌. ـ برنامه‌ریزی‌ حمل‌ و نقل‌ ـ برنامه‌ریزی‌ اقتصادی‌ و اجتماعی‌؛ چون‌ در شهر تنها موضوع‌ مورد بررسی‌ فیزیک‌ شهر نیست‌ بلکه‌ مسأله‌ مهم‌، جامعه‌ شهری‌ و انسان‌هایی‌ هستند که‌ در این‌ محیط‌ زندگی‌ می‌کنند. به‌ عبارت‌ دیگر برای‌ اقشار مختلف‌ که‌ امکانات‌ اجتماعی‌، اقتصادی‌ و فرهنگی‌ دارند یا برای‌ اقوام‌ مختلفی‌ که‌ در مکان‌های‌ مختلف‌ یک‌ شهر زندگی‌ می‌کنند، باید برنامه‌ریزی‌ شود. ـ برنامه‌ریزی‌ شبکه‌های‌ زیرساختی‌ مثل‌ آب‌، برق‌ و تلفن‌ ـ برنامه‌ریزی‌ محیط‌ زیست‌ که‌ به‌ بررسی‌ خطرات‌ محیط‌ زیست‌ مثل‌ سیل‌ و زلزله‌ می‌پردازد و برای‌ مقابله‌ با این‌ سوانح‌ برنامه‌ریزی‌ می‌کند و تأثیرات‌ سوئی‌ را که‌ انسان‌ بر محیط‌ زیست‌ می‌گذارد مطالعه‌ می‌کند. ـ طراحی‌ شهری‌ که‌ به‌ طراحی‌ سه‌بعدی‌ شهر پرداخته‌ و محور توجه‌ آن‌ مناسبات‌ انسان‌ با محیط‌ فیزیکی‌ خود است‌. در واقع‌ در طراحی‌ شهری‌ انسان‌ با تمام‌ خصوصیات‌ جسمی‌، روحی‌ و معنویش‌ مطرح‌ است‌ و هدف‌ آن‌ نیز ارتقای‌ کیفیت‌ شهر می‌باشد.
توانایی‌های لازم :
دانشجوی‌ این‌ رشته‌ باید با طراحی‌ و مفاهیم‌ هنری‌ مثل‌ روانشناسی‌ رنگ‌ها آشنا باشد و در عین‌ حال‌ به‌ مفاهیم‌ تکنیکی‌ و اصول‌ فنی‌ کار مثل‌ نقشه‌برداری‌، رسم‌ فنی‌، پرسپکتیو، هندسه‌ فضایی‌، مدلسازی‌، ریاضی‌ و مسائل‌ انسانی‌ و اجتماعی‌ مثل‌ مبانی‌ جامعه‌شناسی‌ علاقه‌مندباشد. و بداند که‌ در طی‌ تحصیل‌ باید کارهای‌ تحقیقاتی‌ و عملی‌ بسیاری‌ انجام‌ دهد. در ضمن‌ رشته‌ شهرسازی‌ نیاز به‌ مطالعه‌ زیاد، کارهای‌ فیزیکی‌ گسترده‌ و برداشت‌های‌ میدانی‌ بسیاری‌ دارد به‌ همین‌ دلیل‌ دانشجو باید وقت‌ زیادی‌ را به‌ آن‌ اختصاص‌ دهد. همچنین‌ باید قدرت‌ تحلیل‌ بالایی‌ داشته‌ و در طراحی‌ زبردست‌ باشد.

کاربرد ریاضی در معماری
پیر لوئیجی نروی
Pier Luigi Nervi
تولد در سوندریو لومباردی به سال ۱۸۹۱،مرگ در رم به سال ۱۹۷۹٫در سال ۱۹۱۳ در رشته مهندسی ساختمان از دانشگاه بولونا فارغ التحصیل شد.از ۱۹۴۶ تا ۱۹۶۱ استاد مهندس

ی سازه در دانشکده معماری رم بود.
مهندس محاسب و معمار بزرگی که ردیف” فوی ساینت” و”مایار” قرار داردکه در نتیجه ی تسلط برمحاسبات دقیق ریاضی در معماری به شیوه ی زیبا و حیرت انگیزی دست یافت و با فرم هایی که از طبیعت الهام می گرفت همراه با کاربرد تکنیکی مصالح،چشم اندازی موسیقایی در معماری به وجود آورد.او بارها و بارها در نوشته هایش،فرآیند خلاقه ی فرم را در یکسانی،چه در زمینه ی کارهای تکنیکی مهندسی و چه در زمینه های مختلف کارهای هنری به عنوان یک اصل می دانست.روشی که با استناد به آن زیبایی الگوی سازه ای تنها حاصل پی آمدهای روش های محاسباتی نیست،بلکه نوعی روش شهودی است که چگونگی کاربرد محاسباتی آن را معلوم می کند،و بدین ترتیب به آن هویت می بخشد.
نروی متخصص بتن آرمه بود.اولین پروژه ای که طراحی کرد ساختمان سینما ناپل بود که به سال ۱۹۲۷ ساخته شد.روش ساختاری این بنا در عمل رابطه ی بین فرم و عملکرد را به اثبات رساند(روندی که در آینده به نوعی با کژفهمی مواجه شد).این سبک و سیاق را نروی از طریق محاسبات سازه ای به دست آورد و آن را در معماری امری ضروری می دانست.اولین کار مهم او پروژه ی استادیم ورزشی فلورانس بود که در بین سالهای ۱۹۳۰ تا ۱۹۳۲ ساخته شد.پوشش ساده ای که شیوه ی نمایان سازه ای آن از اهمیت خاص برخوردار بود و در اغلب جراید به عنوان الگوی معماری قرن معرفی شد و حالت نمایشی شورانگیزآن با طراحی های لوکوربوزیه قابل مقایسه بود که به نحوی بسیار صریح و روشن امکانات کاربری بتن آرمه را به نمایش درآورد.نروی با طراحی پروژه های آشیانه هواپیما اورویتو(۸-۱۹۳۵)و اوربتللو و همچنین ساختمان برج دل لاگو(۳-۱۹۴۰)،به مطالعه در زمینه ی روش های سقف پوسته ای شبکه تیرچه های باربر پرداخت.این شیوه ی ساختاری همواره به مثابه یک هدف ثابت دنبال شد و در تحقیقاتش گستره وسیع تری یافت ودر ابعاد بسیار عظیم به صور مختلف ادامه پیدا کرد ودر فرآیند خلاقه ی شخصی اش مورد استفاده قرار گرفت.با اجرای این پروژه های آشینه هواپیما (که تاکنون ویران شده اند)،نروی به فرآیند درخشان سازه ای خود مقام و منزلتی بخشید که در کل به زیبایی تکنیک ساختاری اش متکی بود.
در حدود ۱۹۴۰،به مطالعه تجربی در زمینه ی مقاومت فرم پرداخت،و به نتایج موفقیت آمیزی نایل شد؛روند اینترنشنال استیل بسیار نیرومندی که در پوشش سقفهای پوسته ای کاربرد داشت؛در کل جذبه های تکنیکی و شاکله ی بسیار زیبا از دستاوردهای عظیمش بود.این روش را در پوشش سقف تالار بزرگ نمایشگاه تورین به کاربرد(۹-۱۹۴۸)،که یکی از آثار ماندگار و از شاهکارهای معماری قرن بیستم است،هرچند که این پروژه از طرف کسانی که وظیفه ی معماری را اهمیت عملکردی جزئیات داخلی آن می دانند،مورد برداشت های نادرستی واقع شد،در نتیجه ساختمان بسیار مهم وارزشمندی که نروی آن را در زمره ی مهمترین آثارش می دانست،تا حدودی مورد بی توجهی قرار گرفت.ساختمان عظیمی که شامل یک پوشش سازه ای بود که با اجزای پیش ساخته ی بتنی به حالت کج و موجی ساخته شد.
او چند ساختمان پوسته ای بتنی در ابعاد کوچکتر به اجرا درآورد،به نحوی که زیر سقف به طور کامل آزاد بود،بعضی از این پروژه ها پلان دایره ای شکل دارند،از جمله ساختمان کازینوی رم لیدو(۱۹۵۰) و ساختمان تالار اجتماعات و ضیافت “چیانچینو ترم” که بین سالهای ۱۹۵۰ تا ۱۹۵۲ ساخته شد.در همین زمان نیزبه تحقیقاتش در زمینه بتن آرمه ادامه داد،کاربرد قطعات پیش ساخته ی بتنی به صورت تولید انبوه را در رابطه با پوشش سقف سالن های نمایش به عنوان اختراع به ثبت ر

ساند.این ابداع در انواع مختلف سازه های طاق تویزه پشت بنددار کاربرد داشت و همچنین به اغلب پروژه های خیالی و آرمان گرایانه قابلیت اجرایی داد.اختراع مهم دیگراو در عرصه تکنیک،سیستم هیدرولیکی پیش کشیده ی بتن آرمه بود.به هیچ روی دست از تلاش و تحقیق بر نمیداشت.حتی با آزادی عمل هرچه بیشتر روش سازه ای اش را تکامل و بهبود بخشید،با ساده گرایی و سرعت در اجرا،به نحوی متفاوت به تحقیقاتش ادامه داد،شیوه ی ساختاری بسیار زیبایی که از المان های سازه ای ریتمیک تشکیل میشد.نمونه های شاخص این روش،ساختمان ورزش رم بود که با

همکاری “آنیباله ویته لوزی”از سال ۱۹۵۶ تا ۱۹۵۷ به اجرا درآمد و مهم تر از همه ساختمان تالار کنفرانس یونسکو در پاریس (که با همکاری مارسل بروئه و زرفوس در فاصله سال های ۱۹۵۳ تا ۱۹۵۷ ساخته شد).
همچنین شبیه به ساختمان تالار کنفرانس پاریس_پوشش پوسته ای بسیار زیبا و پر وقاری که طراحی آن ملهم از پوشش پوسته صدف دریایی و بالهای حشرات و کاسبرگ گل ها بود-ساختمان آسمان خراش پیرلی را نیز با الهام از فرمهای موجود در طبیعت به فاصله ۱۹۵۵ تا ۱۹۵۸ در میلان با همکاری “جیو پونتی و چند معمار دیگر”به اجرا درآورد.این الگوی ساختمانی به صورت قطعاتی مجزا از هم تکامل یافت.
نروی مهارت خلاقه ی سازه ای اش را در ساختمان مرکز صنایع ملی پاریس (که در ۱۹۵۵ با همکاری ژان پرو طراحی شد)؛و نیز در ساختمان نمایشگاه دایره ای شکل کاراکاس (۱۹۵۶) و ساختمان کاخ دولاورو ،تورین(۱۹۶۱)و همچنین در تالار اجتماعات پاپ در واتیکان که در ۱۹۷۱ ساخته شد،به نمایش درآورد.
کاربردی از ریاضیات در طراحی جاده ها و خطوط راه آهن
قطار های مدل اغلب داری دو نوع ریل هستند : ریل های خمیده ، که در بیشتر اوقات کمان هایی از یک دایره به شعاع R هستند ، و ریل های راست. این ریل ها عمدتا طوری طراحی شده اند که به شکل زیر سرهم بندی می شود
مسیر های AB و CDمستقیم و مسیرهای BC و DAنیم دایره هستند.اما آیا این مسیر ها به اندازه کافی خمیده هستند ؟!
مسیر های طراحی شده بوسیله اصطکاک پایدار می ماند و اغلب ممکن است در هنگام عبور قطار از روی آنها جدا شوند.اگر چه ممکن است در وسط مسیر های خمیده یا مسیر های مستقیم اتصالات دیگری نیز وجود داشته باشد ولی در بیشتر مواقع مسیر کلی از نقاط A,B,C,D جدا می شود .
برای بررسی این اتفاق تصور کنید قطاری با سرعت ثابت در حال حرکت است بنابراین شتاب مم

اس آن یعنی صفر است و در نتیجه شتاب کلی آن تنها شتاب مرکز گرای آن است( شعاع خمیدگی مسیر است که برای شکل بالا بر روی مسیر خمیده مقداری برابر R دارد).بنابراین اندازه شتاب بر روی مسیر مستقیم صفر است و در مسیر نیم دایره است.به این دلیل مقدار شتاب در نقاط A,B,C,D نا پیوسته است (همانطور که در نمودار مشخص است). همین نا پیوستگی سبب می شود تا نیروی عکس العملی که از جانب قطار به ریل وارد می شود نیز در این نقاط نا پیوسته باشد . به همین دلیل نوعی شوک یا ضربه به هنگام وارد شدن و یا ترک پیچ وجود دارد ( البته حتما اثر این ضربه را در پیچ های غیر اصولی هنگام عبور خودرو و یا برعکس نیروی نرم و یکنواخت

ی را در هنگام سفر در داخل مترو حس کرده اید) برای جلوگیری از بوجود آمدن چنین نقاط فشاری که موجب خروج قطار از ریل و یا خروج خودرو از جاده می شود مسیرها می بایست طوری طراحی شوند که خمیدگی جاده بطور یکنواخت تغییر کند.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید
word قابل ویرایش - قیمت 8700 تومان در 14 صفحه
87,000 ریال – خرید و دانلود
سایر مقالات موجود در این موضوع
  1. حدیث امانی گفت:

    با عرض خسته نباشید. این مقالات چاپ شده هستن؟ و اگر چاپ شدن نام نویسنده ها کجا ذکر شده؟

    • pcbrain گفت:

      دوست عزیز سلام این مقاله چاپ شده نیست . اگر مقالات کامل که نام نویسنده ذکر شده باشد نیاز دارید به سایت دانش رسان مراجعه کنید

  2. بهار گفت:

    مقاله کاربرد ریاضی درساختن پل میخواستم

دیدگاه خود را مطرح فرمایید . وظیفه ماست که به سوالات شما پاسخ دهیم

پاسخ دیدگاه شما ایمیل خواهد شد